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Abstract
We conduct a review of the basic definitions and the principal results in the study
of wavelike spacetimes, that is spacetimes whose metric models massless radiation
moving at the speed of light, focusing in particular on those geometries with parallel
rays. In particular, we motivate and connect their various definitions, outline their
coordinate descriptions and present some classical results in their study in a language
more accessible to modern readers, including the existence of “null coordinates” and
the construction of Penrose limits. We also present a thorough summary of recent
work on causality in pp-waves, and describe progress in addressing an open question
in the field—the Ehlers–Kundt conjecture.
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1 Introduction

The goal of this article is first to make explicit the definitions of wavelike spacetimes
with parallel rays in general relativity, and as was done in the development of the
theory, to motivate a number of these definitions with reference to the well-established
theory of electromagnetism. This is the subject of Sect. 2. By “wavelike spacetimes”
we mean those spacetimes which themselves model wavelike behaviour, in contrast
to the spacetimes which model objects that produce radiation.1 We then examine the
coordinate descriptions of the wavelike spacetimes in Sect. 3, where the “adapted”
or “Brinkmann” coordinates in which these metrics are typically written are derived.
Section 4discusses the properties of thewavelike spacetimes, in particular the details of
their so-called “wavefronts”, that such a spacetime appears as a limit of any spacetime
via the “Penrose limit”, and their causal properties. In Sect. 5 we discuss progress in
addressing the “Ehlers–Kundt conjecture”, which is a statement about our expectations
of the wavelike spacetimes based on physical intuition.

It should be noted that this article deals only with the wavelike spacetimes which
possess parallel rays, which is a subclass of all wavelike spacetimes in general relativ-
ity.Amore general class are those geometries admitting shear-free, twist-free, geodesic
null congruences, which splits into the Kundt class (non-expanding congruence)
and the Robinson–Trautman class (expanding congruence). The waves with paral-
lel rays discussed in this article form a subclass of the Kundt class. Other noteworthy
classes include the colliding plane waves, cylindrical gravitational waves, spacetimes
with accelerated sources (C-metrics, more generally spacetimes with boost-rotation
symmetries), solitonic gravitational waves, cosmological gravitational waves in de

1 For such spacetimes, see e.g. the review [1].

123



Exact parallel waves in general relativity Page 3 of 59    40 

Sitter and anti-de Sitter spacetimes, exact gravitational waves in FLRW cosmologies,
Bianchi cosmologies, and Gowdy universes. For reviews of these topics and modern
results other than those presented in the remainder of this article, we direct the reader to
the following articles: A summary of the historical development of the mathematics of
wavelike exact solutions [2], modern references on exact solutions in general relativity
[3, 4], works which deal with colliding plane waves and the physical interpretations
of certain exact solutions [5, 6], and other related reviews [7–10].

1.1 Survey of early developments

Webegin by providing a brief historical perspective on the development of the theory of
waves in general relativity (GR) as in [11] with some relevant additions. In particular,
we outline here only the early results in the field in order to supplement the material
of Sect. 2, and leave discussion of modern developments not covered elsewhere in this
article to the references above.

1915 Albert Einstein establishes the field equation of general relativity
1916 Einstein demonstrates that the linearised vacuum field equation admits wavelike

solutions which are rather similar to electromagnetic waves
1918 Einstein derives the quadrupole formula according to which gravitational waves

are produced by a time-dependent mass quadrupole moment
1925 Hans Brinkmann finds a class of exact wavelike solutions to the vacuum field

equation, later called pp-waves (“plane-fronted waves with parallel rays”) by
Jürgen Ehlers and Wolfgang Kundt. Note that this was a purely mathematical
work, and they were not yet understood as modelling massless radiation.

1926 Baldwin and Jeffery illuminate the interpretations of wavelike spacetimes when
amplitudes are not assumed to be small [12]

1936 Einstein submits, together with Nathan Rosen, a manuscript to Physical Review
in which they claim that gravitational waves do not exist

1937 After receiving a critical referee report from Howard P. Robertson, Einstein
withdraws the manuscript with the erroneous claim and publishes, together with
Rosen, a strongly revised manuscript on wavelike solutions (Einstein-Rosen
waves) in the Journal of the Franklin Institute

1957 Felix Pirani gives an invariant (i.e. coordinate-independent) characterisation of
gravitational radiation, and Bondi independently writes down a metric for the
plane wave which is singularity-free and carries energy [13]. This work was later
developed by Asher Peres in 1959 [14]

1958 Anderzej Trautman reformulates Sommerfeld’s radiation boundary conditions
for a general field theory, and applies this approach to relativity to find the
boundary conditions to be imposed at infinity due to bounded sources in GR

1960 Ivor Robinson and Trautman discover a class of exact solutions to Einstein’s
vacuum field equation that describe outgoing gravitational radiation

1961 Wolfgang Kundt surveys the wavelike geometries as those admitting a twist-
free and non-expanding null congruence, and characterizes their subclasses of
different Petrov type by geometrical properties [15, 16]
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1962 Ehlers and Kundt conjecture that the gravitational pp-waves other than the plane
wave cannot be complete

1962 Roger Penrose provides a geometric definition of asymptotic flatness, along
with various new studies of the asymptotic properties of spacetimes including
definitions and conservation laws for energy and momentum

1965 Penrose shows that the plane waves (gravitational or otherwise) are not globally
hyperbolic

1976 Penrose demonstrates a limiting procedure by which any spacetime reduces to
a plane wave, by “blowing up” a neighbourhood of a null geodesic

In the remainder of this article, we detail a subset of these results followed by a
selection of advances of the theory that have taken place in the decades since. Again
for details on modern advances not within the scope of this article, see [2–10].

1.2 Nomenclature

The names used to refer to different classes of wavelike geometries in this article are
not all standard in the literature, due to a degree of degeneracy in the usage of certain
terms; eg. “pp-wave” can implicitly refer to a 4-dimensional geometry with planar
wavefront, or to an n-dimensional geometry with curved wavefront. Also sometimes
ambiguous is the local or global nature of coordinates used in the description of
wavelike geometries. Due to the importance of dimension, global characteristics and
wavefront geometry in determining the properties of the wave, the authors see it as
necessary to fix one consistent language for the purposes of this article. To summarize
these definitions and to facilitate comparison with the literature, we fix nomenclature
in Table 1 below. In particular, note that the term “parallel wave” has not previously
been used, and instead the term “pp-wave” is often used in the literature to refer to
the same object with the understanding that the geometry in question need not have
planar wavefront.2

2 Defining waves in general relativity

Let us now set about attempting to define a wave in GR. This is not a simple task
because of the inherent nonlinearity of GR, and so we take inspiration from the well-
established linear wave theory of electromagnetism. To this end, we will start by
looking at linearised/“weak-field” GR, and demonstrate that in this linear regime one
finds wavelike behaviour analogous to Maxwell’s electromagnetism (EM), with some
fundamental differences. Such differences have origin3 in the fact that the relevant
field object in EM is a 1-tensor (the vector potential Aμ) whereas in GR the relevant
object is a 2-tensor (the metric gμν).

2 The “wavefront” of a parallel wave is defined precisely in Definition 2.
3 In fact there is another major difference, which is that there are two signs of charge in electromagnetism
and only one in gravitation. Such a property is very relevant in fields like cosmology (EMfields are screened
but gravitational fields are not), but will not impact our attempts at defining wavelike behaviour.
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Upon finding such behaviour in the linear regime, we will discuss how to extend
the results to the general case. This will be accomplished by taking inspiration from
the covariant properties of the linearised waves (those properties which do not depend
on the coordinate system used), and showing that a general metric satisfying such
properties exhibits similar wavelike behaviour.

2.1 Linearised gravity

Finding wavelike behaviour in the linear/weak-field regime is a very standard cal-
culation, completed first in 1916 by Einstein [18] but for a modern presentation see
for example [11, 19, 20]. As a result, in this section we will only restate the results
necessary to build intuition for the later definitions of wavelike behavior. Consider a
perturbation hμν to the Minkowski background ημν . That is, for the spacetime mani-
fold M = R

4 we have the Lorentzian metric

gμν = ημν + hμν, |hμν | � 1 (1)

where we have implicitly chosen local coordinates xμ, and in these coordinates the
Minkowski metric η takes the usual form diag(−1,+1,+1,+1) and the perturbation
hμν is in some sense “small”. Here, “smallness” is defined loosely by the fact that the
terms quadratic in hμν contribute insignificantly to the Einstein equations. We then
wish to obtain the Einstein tensor for this metric to linear order in hμν . To this end,
we may raise and lower indices of hμν with the background metric η since doing so
with the full metric g would lead to corrections of order higher than 1 in hμν . This can
also be viewed as treating the perturbation hμν as a symmetric tensor propagating4 on
a Minkowski background. For the details of this calculation on a curved background,
see [11].

To simplify calculations, one chooses to work not with hμν but rather with the
trace-reversed variable h̄μν defined as

h̄μν := hμν − 1

2
hημν

called so because h̄μ
μ = −hμ

μ =: −h (note that the Einstein tensor is just the trace-
reversed Ricci tensor). In electromagnetism one often works with the Lorenz5 gauge
conditions ∂μAμ = 0 for the vector potential Aμ. Since we are interested in describing
radiation in general relativity, we will use the analogous condition

∂μh̄μν = 0 (2)

4 One could instead derive the linearised Einstein equations as the equation of motion for hμν via a
Lagrangian density, however in this article we take the usual approach of calculating the Einstein tensor
directly.
5 Note that this is not a full fixing of the gauge, as the theory remains invariant under transformations of the
form Aμ −→ Aμ + ∂μ f for a harmonic scalar field f . Also note that this gauge goes by many different
names in the literature, including (erroneously) the Lorentz gauge [19, footnote p. 6].
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on the trace-reversed perturbation h̄μν . As a result of these choices, the Einstein tensor
is given (to linear order in the perturbation) by

Gμν = −1

2
�h̄μν (3)

where we have defined the D’Alembertian � := ∇μ∇μ which here is simply the flat
space D’Alembertian� = −∂2t +∂2x +∂2y +∂2z (the presence of which is an early sign
of wavelike behaviour). Therefore the Einstein equation of linearised gravity reads

�h̄μν = −16πTμν (4)

in units where c = G = 1 and it is understood that the energy-momentum tensor
T is also consistent with the “weak field” regime. By this, we mean that the lowest
nonvanishing order in Tμν is of the same order of magnitude as the perturbation hμν .
The vacuum Einstein equation is then simply a homogeneous wave equation for h̄μν

and so one makes the plane wave ansatz

h̄μν = Cμν(k)e
ikσ xσ

(5)

for some complex, symmetric coefficients6 Cμν and k = (ω,k) a constant vector field
on M (constant in the usual sense, since the background metric is flat). As is standard
when making a plane wave ansatz written in the complex form, it is understood that
at the end of the day, one should take the real part of expressions to obtain physical
results.

The Lorenz gauge condition Eq. 2 for such a perturbation yields

kμCμν = 0 (6)

for all ν, that is, the perturbation is orthogonal to the wave vector. One may interpret
this as the fact that a gravitational perturbation of this kind will be transverse in a
way analogous to the electric and magnetic fields of electromagnetism. The vacuum
Einstein equations for such a plane wave perturbation yield

0 = �h̄μν = −kσ k
σ h̄μν (7)

which is obtained by noting that ∂σ h̄μν = ikσ h̄μν . Since we are not interested in
solutions for which h̄μν is identically zero, we instead have

kσ k
σ = 0 (8)

that is, the “wave vector” k of a planewave solution to the linearised Einstein equations
must be null. This is the statement that in the linear theory, the metric exhibits a

6 We write the components of C as explicit functions of k since the Einstein equation (Eq. 4) provides 4
constraints involving k on the 10 independent components of C , as in Eq. 6.
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wavelike behaviour which propagates at the speed of light c. These facts served as an
early hint that gravitational waves exist, and that they travel at c .

One can utilize the remaining coordinate freedom (since the Lorenz gauge is only
a partial gauge fixing) to obtain illuminating expressions for the Cμν in the so-called
transverse-traceless gauge,7 named so because in such a gauge the perturbation h is
traceless and thus h = h̄. Reusing the labels xμ for the coordinate system resulting
from the full gauge fixing, one finds [20, p. 150] that for a wave travelling in the x3

direction8 the coefficients Cμν take the particularly simple form

(Cμν) =

⎛
⎜⎜⎝
0 0 0 0
0 C+ C× 0
0 C× −C+ 0
0 0 0 0

⎞
⎟⎟⎠ (9)

where the subscripts on the components are justified after computing the effect of such
a perturbation on a ring of test particles, and noting that for onlyC+ nonzero one finds
the ring oscillates in a “+” pattern, and for onlyC× nonzero the ring oscillates in a “×”
pattern [19, 21]. The same structurewill be observedwhenwemake the transition to the
nonlinear theory and attempt to define an analogous “plane wave” (Sect. 2.2.1). Note
that our perturbation is now fully described by the two remaining independent constant
components C+ and C× (and k which here only has one independent parameter, the
frequency ω) suggesting that there exist two linearly independent polarisation states
of gravitational radiation.

To convince oneself of the physicality of these results, one needs to examine the
motion of test particles in such a spacetime. One finds that for non-relativistic test
particles, the geodesic equations are solved by a particle whose coordinate location
remains constant. In fact the coordinate system can be thought of as “moving with” the
particle, effectively hiding the dynamics from the perspective of our coordinates [21,
Sec. 1.4]. Instead, upon examining the relativemotion of test particles via the geodesic
deviation equation, one finds a periodic oscillation of the test particles, supporting the
physicality of such a wave in the weak-field regime.

2.2 Wavelike exact solutions

We now ask ourselves the natural question “does the full nonlinear theory also admit
wavelike solutions?”. Furthermore, we wonder if such solutions reduce to those of the
linear theory in the weak-field regime. In order to generalize the wave objects of the
linearised theory, let us examine which of their properties are covariantly defined (that
is, in a coordinate-independent manner). One easily recognizable covariant property

7 For a simple way to convert quantities from an arbitrary gauge into the transverse-traceless gauge see
[20, Eq. 6.55–6.57].
8 We use a coordinate system {x0, x1, x2, x3} and label the first coordinate x0 as “t”. We choose two of
the spatial components of k to be 0, and since the timelike component of k is denoted as the frequency ω,
the null condition implies (kμ) = (ω, 0, 0, k3) = (ω, 0, 0,±ω) for a future-directed wave vector.
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is that the “wave vector” k should be null

g(k, k) = kμkμ = 0. (10)

Further scrutiny of the results of the previous section yields that kμ is also an
eigenvector of the Riemann tensor with eigenvalue 0, that is

Rμνσρk
ρ = 0 (11)

for all μ, ν, σ . One could use these two properties as a starting point for a definition
of a wave in general relativity, that is a Lorentzian manifold (M, g) admitting a null
vector field9 Z which is an eigenvector of the Riemann tensor with eigenvalue 0. In
fact such a spacetime does exhibit wavelike behaviour [27, Ch.32.3&34.1], but is
rather cumbersome to work with, and is missing some characteristics of the waves in
the linearised theory.

One such characteristic is as follows: When making the plane wave ansatz Eq. 5,
we assumed the vector field k to be constant. As a result, the rays of the corresponding
wave were parallel (in the usual Euclidean sense). In order to obtain the same qualita-
tive behaviour, we should not demand that Z be an eigenvector of the Riemann tensor
with eigenvalue 0, but rather the stronger condition that Z be covariantly constant
(which in some sense generalises the notion of “constant”) which is written ∇Z = 0
for ∇ the Levi-Civita connection of the geometry in question. With this, we attempt
the following covariant definition:

Definition 1 (Parallel Wave) A parallel wave (wave with parallel rays) is a Lorentzian
manifold (M, g) which admits a global, covariantly constant, null vector field Z .

The “rays” of such a wave are the integral curves of the defining vector field Z ,
which are automatically (null) geodesics since Z is covariantly constant. It is justified
that we may call such objects “rays” by the fact that null geodesics correspond to the
paths of light rays.

Remark 2.1 If we had demanded that Z was an eigenvector of the Riemann tensor with
eigenvalue zero instead of being covariantly constant, we would obtain an example
from a general class of solutions called the “Degenerate gravitational fields” which
contains the pp-waves as a subset (that is, Z being covariantly constant implies that
Z is an eigenvector of the Reimann tensor with eigenvalue 0, but the converse is
not true). These degenerate vacuum solutions are defined by the property that they
admit (at least) one shear-free, geodesic null congruence. For details of this class and
in particular the above mentioned example, see [27, Ch. 32.3&34.1]. The family of
geometries admitting at least one shear-free, twist-free, geodesic null congruence splits
into the Kundt class (for a non-expanding congruence) and the Robinson-Trautman
class (for an expanding congruence). For details of these classes see [4], but in this
article we focus primarily on the pp-waves.

9 We change notation from k to Z , which is consistent with the notation of [22, 23], however many different
symbols are used in the literature, such as V [24, 25], l [26] and indeed k [27–29].
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However, another feature of the plane waves in the linearised theory which we
have not yet imposed is the planar character. A plane wave has a planar wavefront
(roughly, the spacelike codimension-2 hypersurface orthogonal to the wave vector),
but in general these parallel waves can have curved wavefronts. Although to obtain
wavelike behaviour it is not necessary to demand the wavefront be flat (and in fact
we will reintroduce this curvature in Sect. 3.5), it is standard in the field to make this
restriction. This is likely because when considering a curved wavefront, the geometric
properties of the wavefront can “obscure” those fundamental properties of the wave,
such as the vanishing of the scalar curvature invariants (Sect. 4.1). To demand the
wavefront is flat, let us define precisely10 the wavefront of a wave:

Definition 2 (The Wavefront of a Parallel Wave) If a parallel wave (M, g) is defined
by a covariantly constant, null vector field Z (analogous to the “wave vector” of a
plane wave in the linear theory) then the wavefront of such a wave is defined as

Z⊥/Z ,

where Z⊥ := {X ∈ T M | g(X , Z) = 0} and the quotient is defined by the equivalence
relation X ∼ Y ⇐⇒ Y = X + f Z for some smooth function f .

We must quotient with the wave vector itself since Z is null, thus Z ∈ Z⊥ and the
natural analogy to electromagnetism suggests that Z itself should not be considered as
part of the wavefront. This definition appears in [24] under the name “screen bundle”,
where it is treated rigorously in the context of compact pp-waves. As the authors note,
the “wave” interpretation becomes less clear in the compact case. As will be discussed
in Sect. 2.3, the presence of radiation is characterized by the null asymptotics of the
spacetime, but a compact manifold does not admit the same notion of “null infinity”
as will be used to define the presence of radiation. With this in mind, we maintain the
name “wavefront” for simplicity. For details of the induced metric on the wavefront
see Sect. 4.2.

Ifwewish to demand that thewavefront beflat, then this ismost succinctly described
(see [25]) by considering the Riemann tensor as a map on bivectors (antisymmetric
2-tensors) in Z⊥∧ Z⊥, in which case the flatness condition for the wavefront becomes

R|Z⊥∧Z⊥ = 0. (12)

With this, we arrive at the definition of the plane-fronted waves with parallel rays
(pp-waves).

Definition 3 (Plane-fronted Wave with Parallel Rays (pp-Wave)) A pp-wave is
Lorentzian manifold (M, g) which admits a global, covariantly constant, null vec-
tor field Z , in which the curvature tensor satisfies R|Z⊥∧Z⊥ = 0.

Note that in the literature (for example [3, Eq. 24.39]) a pp-wave is often defined
as a Lorentzian manifold admitting a covariantly constant, null vector field (that is,

10 In order to define a true “direction ofmotion” of the wave and its wavefront, onemust specify an observer
(or really family of observers). For the details of how the observer can be used to define the wavefront in
coordinates, see [17, Eq. 4.2.1].

123



Exact parallel waves in general relativity Page 11 of 59    40 

our definition of a parallel wave), where it is understood that the name refers to no
actual planar character. Other works however also include also the curvature condition
Eq. 12 as is done here, eg. [24–26].

2.2.1 Comparison with the linearised theory

We now set about comparing the features of these pp-waves with those of the waves
found in the linear regime. Consider the metric of Minkowski space written in the
so-called “light-cone” coordinates11

η = 2dudv + dx2 + dy2, (13)

where the coordinates u and v are defined in terms of the standard t, x, y, z coordinates
as

u := z − ct√
2

v := z + ct√
2

(14)

and where we briefly reintroduce the speed of light c for transparency. As we will
prove in Sect. 3.1, a 4-dimensional pp-wave metric can locally be written as

g = 2dudv + H(u, x, y)du2 + dx2 + dy2, (15)

where the so-called “characteristic function” H is independent of the coordinate v,
and where we have suggestively used the same coordinate labels as for the above
flat metric. Here H describes the wave (deviation from flat space) in the sense that
when H = 0, we simply have the above flat metric Eq. 13. Note that this metric is a
solution of the vacuum Einstein equations if and only if H is harmonic in (x, y), that is
(∂2x + ∂2y )H(u, x, y) = 0. Here we already see a hint of wavelike behaviour. Treating
H as a perturbation on the Minkowski background (and thus inheriting the coordinate
system of Eq. 13), we see that the perturbation depends on time only through the
coordinate u, that is a time-dependence proportional to z − ct , as one would expect
for a travelling wave.

Surprisingly, as in [27, Above Eq. 29.46], one can show that the pp-wave metric
Eq. 15 in fact solves the linearised field equations. This is because even in the general
theory, no expressions of quadratic order or higher in H nor its derivatives appear in
the field equations for such a spacetime. The primary difference with the linear theory
is that H need not be “small”. In this way, we see that the “standard pp-waves” do in
fact generalise the results of the linearised theory.

We will find in Sect. 3.3.1 that the simplest pp-wave occurs when the characteristic
function H(u, x, y) is quadratic in (x, y) (with arbitrary u-dependence). Such a pp-
wave is typically referred to as a “plane wave”. These spacetimes exhibit the same
polarization states as those which can be derived in the linear regime, and this is one
reason they are given the name “plane waves” (shown in Sect. 3.3.1). For a detailed
description of the “planeness” of such spacetimes, see [30, Sec. 3]. In order to directly

11 Such coordinates are usually written with “−2 du dv” rather than the positive term in our metric. Simply
transforming v −→ −v yields our description.
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compare these simple pp-waves to the plane wave solutions in the linear regime, as
in [27], one “linearises” the exact solution by assuming the amplitude of the wave is
small. The reasoning of Stephani [27] is as follows:

• The vacuum plane wave metric of linearised gravity can be written as

g = 2dudv + (1+ f (u)) dx2 + (1− f (u)) dy2,

where f (u) = A cos(ω
c (u + ϕ)) for some frequency ω, phase ϕ and constant A.

As usual on a Minkowski background, we interpret u as z − ct .
• The linearised version of the vacuumplanewavemetric (pp-wavewith H harmonic
and quadratic in (x, y)) can be written

g = 2dudv + (1+ α(u)) dx2 + (1− α(u)) dy2

with the u-dependence of α arbitrary, and α � 1.
• The frequency ω of the linearised theory is fixed by the plane wave ansatz, but
the profile functions α(u) of the second case have no predetermined frequency.
Therefore the α(u) can be chosen for example as

∑
j

A j cos
(ω j

c
(u + ϕ j )

)

for small constants A j , which corresponds to a superposition12 of waves of varying
frequency. In this way, the exact solution plane waves are interpreted as a packet
of plane waves of differing frequencies.

There is a more convincing reason why one would call such a pp-wave a “plane
wave” based on the algebraic and geometric symmetries of the spacetime, and we will
discuss this in the following section.

2.3 Spacetimes containing gravitational radiation

Let us now review two paths by which one can obtain definitions of the presence of
wavelike behaviour/radiation in a spacetime, and the ways in which these approaches
coincide with our existing definition of an exact solution describing only a wave.

2.3.1 Algebraic classification of the Weyl tensor

Felix Pirani and Hermann Bondi (independently) pioneered an attempt at defining
gravitational waves as exact solutions of the Einstein field equations, using geometric
and algebraic principles developed first by Petrov. Our presentation will follow closely
that of [21, p. 8,9]. The key concept in this endeavour is the Weyl tensor, which is the
trace-free part of the Riemann tensor. As such, the Riemann tensor reduces to theWeyl

12 For any α one may examine it’s Fourier decomposition to obtain such an interpretation.
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tensor in vacuum regions, where the Ricci tensor (the trace of the Riemann tensor)
vanishes.

Rμν = 0 ⇐⇒ Cμνσρ = Rμνσρ (16)

for allμ, ν, where it is understood that aC with four indices is theWeyl tensor, not to be
confusedwith the (0,2)-tensorC in the planewave ansatz Eq. 5 of the linearised theory.
When looking in particular for gravitational waves (i.e. in vacuum), it is apparent that
the relevant object for describing the wave is the Weyl tensor.

Pirani’s intuition was that for gravitational waves, the Weyl tensor should exhibit
special symmetries. The Weyl tensor of a spacetime (M, g) is conformally invariant,
that is, it is invariant under conformal transformations of the metric:

gμν −→ g′μν = λ2gμν (17)

Cμνσ
ρ −→ C ′

μνσ
ρ = Cμνσ

ρ (18)

for some conformal factor λ : M �→ R. Intuitively, the Weyl tensor expresses the
tidal forces that a free-falling body feels along a geodesic (see [21]). That the Weyl
tensor describes tidal forces (roughly, the relative acceleration felt by two test masses
separated by an infinitesimal distance) should sound familiar, as this was how we
detected the physical effect of gravitational waves in the linearised theory. It should
not be surprising then that the Weyl tensor is the object describing radiation in general
relativity. The correspondence between tidal forces and exact gravitational waves has
been the subject of much study (often from the perspective of the geodesic deviation
equation), details of which can be found in the following articles: [29, 31–35].

In 1954, Petrov devised a classification of the algebraic symmetries of the Weyl
tensor at each point in a 4-dimensional spacetime, and Pirani independently derived
the same classification in 1957. They noted that the Weyl tensor preserves the anti-
symmetry of antisymmetric 2-tensors (or “bivectors”), that is for Xμν = −Xνμ,

XμνC
μν

σρ = Yσρ (19)

where Yμν is also a bivector. By finding the eigenbivectors Xμν of the Weyl tensor,
i.e. bivectors satisfying XμνCμν

σρ = 2λXσρ , one can classify 6 types of algebraic
symmetry. The eigenbivectors for a given point p in a spacetime are related to a set of
null vectors in TpM called the “principal null directions” (PNDs) at p, but the specifics
of this correspondence are rather complicated. For details see for example [3] or [36,
Sec. 7.2-7.4].

One may wonder why there are 6 symmetry types, but this is simply because the
Weyl tensor can have at most 4 linearly independent eigenbivectors, and so the options
are:

Type I: ↑→↖↗ Type II: ↑↑↗↘ Type D: ↑↑→→
Type III: ↑↑↑→ Type N: ↑↑↑↑ Type O: Cμνσρ = 0

where aligned arrows represent linearly dependent PNDs. The Bel criteria are the
conditions on the Weyl tensor Cμνσρ (in a special coordinate system) such that it is
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of one of the above types. The Bel criterion for a type N spacetime is that the metric
admits a null vector field kρ

Cμνσρk
ρ = 0 (20)

This condition should again look very familiar, as it was one of the two covariantly
defined properties of the wave vector k in the linear theory, where the Riemann tensor
is replaced by only the Weyl tensor (which it indeed reduces to in a vacuum region).
The four coinciding PNDs indeed correspond to the wave vector of the linear theory,
but also to the covariantly constant, null vector field Z in the definition of a pp-wave
Eq. 3. By this wemean that the pp-wave spacetime is everywhere algebraically special,
and is of Petrov type N.

In this way, the Petrov type N represents the presence of wavelike behaviour in a
spacetime. Note that the Petrov type can vary from region to region in a spacetime
(though not all “transitions” are possible, see [21]), and so the Weyl tensor of what we
could reasonably consider a radiative spacetime should be of type N in the far-field
(towards null infinity). Such a statement is made precise by the “peeling theorem” [37–
39], which describes the asymptotic behaviour of the Weyl tensor as one approaches
null infinity. For r an affine parameter along a null geodesic γ from a point p to null
infinity, as r → ∞, the Weyl tensor can be written in a parallelly propagated frame
along γ as

Cμνσρ = C (N)
μνσρ

r
+ C (III)

μνσρ

r2
+ C (II)

μνσρ

r3
+ C (I)

μνσρ

r4
+ . . . (21)

where the superscript on each term on the right hand side represents the Petrov type
of that tensor. Roughly,13 towards null infinity one finds that the dominant behaviour
comes from the type N component. This expansion bears a striking resemblance to the
multipole expansion of the electromagnetic potentials, wherein again only the ∼ 1/r
term contributes to radiation.

Remark 2.2 Wepause tomention here themore geometric notion of asymptotic behav-
ior at infinity due to Penrose [40], where infinity is regarded as a three-dimensional
boundary corresponding to  = 0 in the definition of the following conformal metric

g = 2 g̃,

where g̃ is the original spacetime metric. The key is that one can treat infinity as a
3-dimensional boundary while still studying those physical properties of the original
spacetime metric g̃ that are conformally invariant. For a comprehensive treatment of
this notion of conformal infinity, consult [41]; for its more recent use in holography
and the AdS-CFT correspondence, consult, e.g., [42].

Remark 2.3 It is worth now stating precisely what one means by gravitational radia-
tion. As in [31], gravitational radiation is the transfer of energy via gravitational waves
to null infinity, that is gravitational radiation is present in the asymptotic regime of
an isolated dynamical system in GR such as that in the Christodoulou-Klainerman
spacetimes [43].

13 For the subtleties in such an interpretation we direct the reader to the afformentioned references [38,
39].
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In 1957, Pirani attempted to define the presence of gravitational radiation as being
modelled by a spacetime which was everywhere algebraically special with certain
type [44], but eventually published new work with Robertson and Bondi [30, Sec. 4]
in which they claimed that such a definition was too restrictive and in fact only applies
to pure radiation; it would not describe the radiation from a system of charges (grav-
itational or electromagnetic) at a finite distance. As such, they revised the definition
of a spacetime containing gravitational radiation to a spacetime which is asymptoti-
cally type N. One reason for this is that a plane wave is everywhere14 type N (again
in the original classification of Petrov), and in the far-field, gravitational radiation
should approximate the plane wave. The everywhere type N spacetimes contain the
“pp-waves” defined above as a subclass, see [4, Sec. 18.2].

2.3.2 Groups of motions (symmetry)

In an attempt at a purely geometric definition of gravitational waves, Bondi, Pirani
and Robinson began by attempting to define covariantly the plane wave. They do this
by demanding that the gravitational plane wave of general relativity should “possess
an analogous degree of symmetry to that possessed by plane electromagnetic waves
in flat space-time” [30, Sec. 2]. As mentioned in the original paper, this approach
ensures that one avoids the so-called “coordinate waves” which are apparent wavelike
behaviours which are removed by a diffeomorphism (and thus, simply artifacts of the
coordinates chosen).

Consider a plane wave inMinkowski space with wave vector in the positive z direc-
tion.15 There is one clear symmetry of such a wave, and that is the planar wavefront.
More precisely, translations in the x and y directions leave our description invari-
ant. Another symmetry is due to the translation of the wavefronts themselves, i.e. the
translation along the null 3-surfaces z − t = const in units where c = 1. In fact,
there are an additional 2 less obvious symmetries known as the “null rotations”, which
are more difficult to see and visualise as their nature is inherently 4-dimensional. In
total, we say there exists a 5-parameter group of motions (isometries) under which the
plane wave is invariant. The corresponding Killing vector fields for these isometries
are given explicitly in [3, Table 24.5] and [4, Sec. 17.5]. Using this as inspiration,
the authors defined a gravitational plane wave as follows, where “equivalent” is in
reference to a spacetime with metric Eq. 15 such that H is quadratic in (x, y) as was
briefly mentioned in Sect. 2.2.1, and is made more explicit in Sect. 3.3.1.

Definition 4 (Equivalent Definition: Plane Wave) A plane wave is a 4-dimensional
non-flat Lorentzian manifold (M, g) which admits a 5-parameter group of isometries.

Note that in the original [30], the definition also involves “Ricci-flat”, but this
would only correspond to the purely gravitational plane waves. The other definitions
of the plane wave presented here (via quadratic H in Brinkmann coordinates and

14 Note that the “sandwich waves” and “impulsive waves” mentioned in Table 1 are in fact everywhere type
O (flat) except for a curved region in which they are type N. Additionally, for certain impulsive waves such
as the Aichelburg-Sexl solution [45], the geometry is also asymptotically flat in the transverse directions
(x and y here).
15 We use the standard coordinate system {t, x, y, z}.
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via the curvature condition of Definition 5) include also electromagnetic plane wave
components in general. Also note that we make no assumption about the structure
of the symmetry group; in particular, we do not assume it to have the same group
structure as that of a plane wave in electromagnetism. Remarkably, such a property
appears as a consequence of our existing assumptions. Such symmetries can be viewed
as generated by vector fields, and the explicit form of these generators is given in [30,
Eq. 2.12], for a wave constructed in such a way that it has a finite wave profile.16

Note also that the gravitational plane wave of Definition 4 above is in fact a special
case of our pp-wave spacetimes (Definition 3), and corresponds to the “plane wave”
mentioned in the comparison to the linear theory. These plane waves are described
fully in Sect. 3.3.

We can also define the plane wave in a covariant manner as in [25] as follows, where
a “classical pp-wave” is simply a 4-dimensional pp-wave with planar wavefront (see
Sect. 3.3):

Definition 5 (Equivalent Definition: Plane Wave) A plane wave is a classical pp-wave
defined via a covariantly constant, null vector field Z which additionally satisfies

∇X R = 0 ∀ X ∈ Z⊥,

where R is the curvature tensor and Z⊥ := {X ∈ T M | g(X , Z) = 0}.
We prove the correspondence of such a definition with the other definitions of a

plane wave in Sect. 3.3.1. For a full discussion of the properties of such waves, the
fact that such a definition actually coincides with the algebraic definition of plane
waves and the conceptual difficulties involved (e.g. “to whom is such a gravitational
plane wave planar?”), see [30]. For a succinct overview of the connection between
the Petrov classification and the definition of the plane wave in terms of its symmetry
group, see [2, p. 688].

Note that all our definitions involve at least one lightlike group of motions (symme-
try), corresponding to the “propagation” of the wave. There are conditions one may
place on a wave such that the wavefront itself is of finite extent (which amount to
conditions on the characteristic function H in standard coordinates) and such con-
ditions have relevance to determining the causal character of the wave, as we will
see in Sect. 4.4. For a detailed table describing various special cases of gravitational
pp-waves and their symmetry properties/Killing vector fields, see [17, p. 79].

The next step in defining the presence of radiation in a spacetime was provided by
Trautman, by imposing boundary conditions at infinity in analogy to the Sommerfeld
radiation conditions. He showed that in electromagnetism, his conditions restricted
one to those solutions of Maxwell’s equations with outgoing radiative fields. Note that
as in the case of the Petrov classification, it is the asymptotic behaviour which is used
to define the presence of waves. For a review of Trautman’s definition in the context of
the development of gravitational wave theory, see [2], and for Penrose’s contribution
to the study of asymptotics and their relation to outgoing radiation, see [40].

16 Such waves have been named “sandwich waves” since they exhibit a non-flat region (the wave packet)
sandwiched between flat regions. Note also that in the limit of shrinking support of the curved region, one
obtains the so-called “impulsive waves” [46].
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3 The coordinate description

We have defined a parallel wave as a Lorentzian manifold admitting a covariantly
constant, null vector field, and a pp-wave as a parallel wave with flat wavefront. In
this section, we first derive the most general form of a Lorentzian metric satisfying
these conditions, and then discuss the various simplifications which have been studied
in the literature. These simplifications remain exact wavelike solutions to the Einstein
equations, but have the benefit of being easier to understand and work with. The
simplest and most widely known example we call the “classical pp-wave”, which is
discussed in Sect. 3.3.

Notation Our goal is to develop a local coordinate system on a parallel wave of
dimension n which we will denote {u, v, x}, where x = x1, . . . , xn−2 are the so-
called “wavefront coordinates”. This name is justified by examining the definition of a
wavefront (Definition 2) in the context of the coordinate description of a parallel wave
metric Eq. 23. We will use Greek indices when referring to all coordinates {u, v, x},
and Latin indices (other than the letters u and v) when referring to only the wavefront
coordinates. For example, the sum gva Xa for some vector field X ∈ X(M) (the space
of vector fields on M) will have n − 2 terms (a �= u, v), whereas the sum gvσ Xσ will
have n terms. To avoid confusion with the coordinates u and v, we will not use the
typicalμ and ν Greek indices in this section, and instead we will favor σ, ρ, γ . For the
Latin indices, we use a, b, c and i, j, k. Additionally, when a coordinate is labelled
xi , we will denote its corresponding coordinate vector field by ∂xi =: ∂i .

3.1 General parallel waves and pp-waves

Consider the n-dimensional Lorentzian manifold (M, g). Denote the covariantly con-
stant null vector field on M by Z , that is ∇Z = 0 and g(Z , Z) = 0 for ∇ the
Levi-Civita connection on (M, g) and Z nontrivial.

Theorem 3.1 (Coordinates adapted to covariantly constant,17 null vector field) If a
Lorentzian manifold (M, g) admits a covariantly constant, null vector field Z, then in
a neighbourhood U of each p ∈ M there exists a local coordinate chart ϕ = {u, v, x}
on U which is “adapted to Z” such that

Z |U = ∂v = ∇u.

Proof The proof can be found in “Appendix A”. ��
The following proposition outlines the properties of the metric g when it is written

in these adapted coordinates.

Proposition 3.2 If a Lorentzian manifold (M, g) admits a covariantly constant, null
vector field Z, and {u, v, x} are the local coordinates adapted to Z of Theorem 3.1,
then the metric components in this coordinate system have the following properties
on the domain of definition of the coordinates:

17 Note that for this particular result, one may relax the condition that Z be covariantly constant. For details
see Sect. 4.3. In this context however, Z is always assumed to be covariantly constant.
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(i) All metric components are independent of v, that is ∂v(gμν) = 0
(ii) gvσ = δuσ
(iii) (gab) forms a positive-definitematrix, and therefore the embedded codimension-2

submanifolds defined by u = const, v = const are Riemannian manifolds.

Proof (i) A covariantly constant vector field Z is in particular a Killing vector field.
By definition of a Killing vector field we have LZ (g) = 0, but since Z = ∂v we
have 0 = [LZ (g)]σρ = Z(gσρ) = ∂v(gσρ).

(ii) First note that Zσ = δσ
v and therefore Zσ = gvσ . Then since Z = ∇u = du ,

we have Zσ = duσ = δuσ . Therefore gvσ = δuσ .
(iii) First, the hypersurfaces�c := u−1(c) = {

q ∈ U : ϕ(q) = (
c, v(q), x1(q), . . . ,

xn−2(q)
)}

are null hypersurfaces since the normal to these surfaces is the null
grad(u) = Z . Via the previous point, the normal Z = ∂v is orthogonal to ∂i for
all i ∈ {1, . . . , n − 2} and to itself and therefore all these coordinate vectors lie
in the null hypersurfaces �c.
Via [47, Lemma 28, p. 142] we have that a null hypersurface can contain only
one null vector (here, Z = ∂v itself) and so the remaining coordinate vector fields
must be timelike or spacelike. Via point (2) of the same lemma, we have that
there are no timelike vectors, and therefore the ∂i for all i ∈ {1, . . . , n − 2} are
spacelike and thus gii > 0 for all i , that is (gab) is positive-definite.

��
Using the results of Theorem 3.1 and Proposition 3.2, we can nowwrite the explicit

form of the metric g in adapted coordinates for a general parallel wave:

g = 2dudv + guu (u, x) du2 + 2gau (u, x) dxadu + gab (u, x) dxadxb (22)

The functions guu (u, x) and gau (u, x)will be useful for the classification of parallel
wave spacetimes, andwewill therefore label them H (u, x) and Aa (u, x) respectively.
We then have the metric of a general parallel wave in local adapted coordinates [48–
51],

g = 2dudv + H (u, x) du2 + 2Aa (u, x) dxadu + gab (u, x) dxadxb. (23)

One could also write this metric in matrix notation as

g =

⎛
⎜⎜⎜⎜⎜⎝

H 1 A1 . . . An−2
1 0 0 . . . 0
A1 0
...

... (gab)
An−2 0

⎞
⎟⎟⎟⎟⎟⎠

. (24)

In fact, this result can be viewed as a special case of a more general result by [52],
which derives this form of a metric admitting a parallel null plane rather than a parallel
null vector field. Conceptually the generalisation is simple, as a parallel null r -plane is
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pointwise a set of r linearly independent vectors, such that the field of planes (replacing
the vector field in the above example) is a parallel null r -dimensional section of the
tangent bundle T M . In this case, the metric takes a form similar to Eq. 24, though
with some individual elements replaced by matrix blocks.

If we then impose the curvature condition Eq. 12 to obtain a pp-wave, as demon-
strated in [25, AppendixA] one finds the metric of a general pp-wave in local adapted
coordinates

g = 2dudv + H (u, x) du2 + 2Aa (u, x) dxadu + δab (u, x) dxadxb. (25)

Note that in the context of pp-waves, these coordinates are sometimes referred to as
Brinkmann coordinates due to their original discovery [48] in a primarilymathematical
context. The original work does not impose the curvature condition Eq. 12 and thus
“Brinkmann coordinates” can refer to either Eq. 23 or implicitly to Eq. 25.

The properties of this general metric and some of the various special cases are dis-
cussed in Sect. 4. The remainder of this section focuses on defining these special cases,
which are obtained by making additional assumptions on H , Aa, gab, the topology of
the manifold, or the dimension n.

Remark 3.3 Gauge Freedom: The gauge freedoms of the parallel wave and pp-wave
metrics have been studied carefully, for example by [3, Sec. 24.5] in the n = 4 case,
and [50, Sec. 6.1] in the n > 4 case. In vacuum regions it is standard to utilize local
gauge freedoms to eliminate the cross terms dxadu, though in certain cases one can
“lose” some global information about the nature of the wave source in doing so. Both
the process of changing the coordinates to eliminate these terms and extensive detail
about which global information is lost in performing such a transformation can be
found in [53], and will be discussed again in Sect. 3.4. Upon eliminating these terms,
the metric locally takes the form

g = 2dudv + H (u, x) du2 + gab (u, x) dxadxb (26)

which one can summarise as

g = 2dudv + H (u, x) du2 + h(u), (27)

where h is a u-dependent family of Riemannian metrics on the codimension-2 hyper-
surface u = const, v = const. The construction of this form of the metric can be found
for the special case of classical pp-waves (Eq. 32 below) in [17, Theorem 4.1.3].

For such a metric, it was shown in [25] that the coordinate changes which leave
this form Eq. 26 invariant are

v −→ v′ = 1

a
v + f1(u, x)

u −→ u′ = au + b

x −→ x′ = f2(u, x), (28)
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where a �= 0 and b are constants and f1, f2 are smooth functions independent of v

on the domain of the coordinate chart. In such coordinates, the metric would retain its
form

g = 2du′dv′ + H ′ (u′, x′) du′2 + h′(u′). (29)

The authors showed that this fact may be used to transform to so-called normal
Brinkmann coordinates centred at p, in which it holds that ϕ(p) = 0 ∈ R

n where ϕ

is the coordinate chart and

H(u, 0) = 0,
∂H

∂xi
(u, 0) = 0 (30)

for all u in an interval around 0.

3.2 Standard pp-wave

The class of pp-wavemost commonly studied in the physics literature has been referred
to by [24, Eq. 2] as a standard pp-wave. The defining characteristics of a standard pp-
wave metric when written in the coordinate chart {u, v, x} of Theorem 3.1 are:

(i) The coordinates {u, v, x} exist globally
(ii) The metric is written with no cross terms dxadu, that is Aa = 0 for all a.

and thus our metric takes the form

g = 2dudv + H (u, x) du2 + δabdx
adxb. (31)

One can see that in coordinates, the codimension-2 hypersurface defined by u =
const, v = const corresponds precisely to the wavefront of Definition 2. Unsurpris-
ingly, for this n-dimensional standard pp-wave, the wavefront (or “transverse space”)
is simply Euclidean R

n−2.
By assuming the coordinates u and v exist globally, we are making assumptions

on the properties of the spacetime manifold M . Certainly, that M is simply-connected
is a sufficient condition for the coordinate u being global (since then the construc-
tion involving the Poincaré lemma would hold globally) but this is certainly not a
necessary condition (for example the (N , h)p-waves of Sect. 3.5 with any non-simply
connected N still admit a global u). In the case of the v coordinate, one expects that the
integral curves of Z should be complete and non-closed.18 Typically physical research
involving pp-wave spacetimes begins with the assumption of a Lorentzian manifold
(M = R

n, g) with a metric of the form above.

18 It appears the analysis of weakest conditions under which such coordinates exist globally is not present
in the literature, and remains an open question.

123



Exact parallel waves in general relativity Page 21 of 59    40 

3.3 Classical pp-waves

These are the pp-waves for which the wavefront is two-dimensional Euclidean space,
that is they are standard pp-waves on R

4 such that the metric takes the form

g = 2dudv + H(u, x, y)du2 + dx2 + dy2, (32)

where the usual adapted coordinates on the wavefront (x1, x2) have been relabelled19

to (x, y). This metric is the most widely-known and well-studied pp-wave metric, due
to its relevance to physics, and its simplicity while still exhibiting the key features of
a pp-wave. The most important types of classical waves are the plane waves, whose
properties will be discussed extensively in Sects. 4.4 and 5.

3.3.1 Plane waves

A plane wave is a classical pp-wave for which the characteristic function H(u, x, y)
is quadratic20 in (x, y), i.e. the metric of Eq. 32 wherein

H(u, x, y) =
2∑

i, j=1

hi j (u)xi x j (33)

for a symmetric 2×2 and u-dependent matrix hi j (u). The vacuum Einstein equations
imply [11] that hi j should be trace-free, which means we can write

(hi j )(u) =
(
f+(u) f×(u)

f×(u) − f+(u)

)
. (34)

Hadwewanted to describe a purely electromagneticwave rather than a gravitational
wave, one should have (hi j ) = diag( f (u), f (u)) for some arbitrary smooth f . A
sandwich wave is obtained when the support of the profile functions is compact; for
details see [54, Eq. 2.1] and [4, Sec. 17.4]. Note that the presence of two functions
necessary to describe the wave, as in the linear regime, means that the gravitational
wave described by such a metric possesses two linearly independent polarization
states. Note that we have used the analogous subscripts as we had on the coefficients
Cμν , as the f+ and f× functions again describe the components of the wave in each
polarisation state. If we had not imposed the vacuum condition, the plane wave would
instead have described a coupled system of both gravitational and electromagnetic
plane waves. Such plane waves were originally studied in [12] and then by [55].

19 In some expressions it will be useful to label these coordinates as the usual xi , such that for example∑
i∈{1,2} xi = x + y

20 Both in the literature and here, “quadratic” means that H is purely quadratic, that is contains only
quadratic terms in the variables x and y as in Eq. 33 (e.g. H(u, x, y) = f (u)x2 + 3xy as an example
without much physical meaning). This is because any linear or constant terms in H can be removed via a
coordinate transformation, as noted in [22, Sec. 2.2].
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Let us now examine the affect of these polarisation states as in [11, p. 94], where
we skip some steps due to the similarity with the analysis of the linear regime. For a
plane wave, the geodesic equation for u is simply ü = 0, that for v is

v̈ = 1

2

(
f ′+(u)(x2 − y2) + 2 f ′×(u)xy

)
u̇2+ (

f+(u)(x ẋ − y ẏ)+ f×(u) (x ẏ + yẋ)
)
u̇

(35)
and for x and y we have

(
ẍ
ÿ

)
= 1

2

(
f+(u) f×(u)

f×(u) − f+(u)

)(
x
y

)
. (36)

Since ü = 0, we have that u(s) = as + b for curve parameter s and a, b ∈
R. Therefore as the affine parameterisation along a geodesic is only unique up to a
transformation of the form s �→ cs + d, u itself can be used as an affine parameter
and we may take u(s) = s.

For the “+” mode, we have f× = 0, and one finds the geodesic equations reduce
to (

ẍ(s)
ÿ(s)

)
= f+(s)

2

(
x(s)
−y(s)

)
. (37)

That is, the motion decouples and takes place only in the transverse directions (as
expected by analogy with the linear theory). This motion is such that where f+(s) is
positive, there is a “focusing” in the x direction and a defocusing in the y direction.
Where f+ is negative, one sees the converse effect.

By introducing coordinates (w, z) rotated by 45◦ relative to (x, y), and taking the
“×” polarisation mode f+ = 0, one finds precisely the same equation of motion for
the rotated variables (

ẅ(s)
z̈(s)

)
= f×(s)

2

(
w(s)
−z(s)

)
, (38)

where

(
w

z

)
= 1√

2

(
1 1
−1 1

) (
x
y

)
.

Thus the two polarization modes have precisely the same effect as in the linearised
theory, but now there is no requirement that the separations be “small”. This is in
line with the interpretation of the characteristic function H as corresponding to the
perturbation hμν of the linear theory, but without the requirement that it be “small” in
some sense.

We now demonstrate that the above expression for the metric of a plane wave
(Eq. 33) corresponds to our previous definitions of a plane wave. The correspondence
between the dimension of the symmetry group and the form of the line element has
already been succinctly and fully described by [17, Table, pg 79], and so we will not
reproduce the calculation here. This establishes the connection with Definition 4, and
we now illustrate the connection with Definition 5.
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Lemma 3.4 The planewave ofDefinition 5 corresponds to a classical pp-wave (Eq. 32)
for which the characteristic function H in Brinkmann coordinates is quadratic in
(x, y). That is, the condition

∇X R = 0 ∀ X ∈ Z⊥,

where Z = ∂v in these coordinates, R is the curvature tensor and Z⊥ := {X ∈
T M | g(X , Z) = 0} is equivalent to Hxxx = Hyxx = Hxyy = Hyyy = 0 for classical
pp-waves.

Proof First note that ∂x and ∂y are elements of Z⊥. Let us begin by examining ∇∂x R
which we assume to be 0, and we will see that this implies Hxxx = Hyxx = 0.

0 = (∇∂x R)(∂u, ∂x , ∂u)

= ∂x (R(∂u, ∂x )∂u) − R(∇∂x ∂u, ∂x )∂u −��������0
R(∂u,∇∂x ∂x )∂u − R(∂u, ∂x )∇∂x ∂u

= ∂x (∇∂u∇∂x ∂u − ∇∂x∇∂u∂u) −
Hx

2 �������0
R(∂v, ∂x )∂u − Hx

2 �������0
R(∂u, ∂x )∂v

=
����������0
Hxux

2
∂v − Huxx

2
∂v + Hxxx

2
∂x + Hyxx

2
∂y, (39)

where we have used that the nonzero Christoffel symbols are given by

∇∂x ∂u = ∇∂u∂x =
Hx

2
∂v, (40)

∇∂y∂u = ∇∂u∂y =
Hy

2
∂v, (41)

∇∂u∂u = Hu

2
∂v − Hx

2
∂x − Hy

2
∂y . (42)

Thus Hxxx = Hyxx = 0, and the remainder of the proof then follows by considering
(∇∂y R)(∂u, ∂y, ∂u), from which the result is obtained in precisely the same manner as
for ∂x . The reverse direction of the equivalence then follows from the fact that Z⊥ is
pointwise spanned by ∂x , ∂y and ∂v , and that ∂v is a Killing vector field. ��

3.4 Gyratonic pp-waves

The gyratonic pp-waves are those pp-waves with nonvanishing Aa , that is the general
metric can be written as

g = 2dudv + H (u, x) du2 + 2Aa (u, x) dxadu + gabdx
adxb, (43)

but note that the gyratonic pp-waves may also be studied with flat wavefront (gab =
δab) as in [53]. Such pp-waves have been studied extensively, for example in [56],
and in [53], wherein work by [57] is used to conclude that in the Ricci-flat case, they
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correspond to the exterior vacuum field of spinning particles moving with the speed
of light. In reference to the off-diagonal terms with coefficients Aa , the authors state:

In vacuum regions it is a standard and common procedure to completely remove
these functions by a gauge (coordinate) transformation.However, such a freedom
is generally only local and completely ignores the global (topological) properties
of the spacetimes. . . . In particular the possible rotational character of the source
of the gravitational waves (its internal spin/helicity) is obscured.

What one finds [53, Sec. 4] is that the physical characteristics one can define in a pp-
wave spacetime can be obscured via the local gauge transformations which eliminate
the Aa , and in general it may be necessary to keep such terms.Most notably, one should
pay close attention to such terms when attempting to define the angular momentum
density of pp-waves in an analogous manner to the linearised theory [8]. In the end,
such a physical property depends manifestly on the Aa via the contour integral (see
[53, Eq. 33]) ∮

C
Aadx

a, (44)

where C is a (not completely arbitrary) contour in the transverse space.

3.5 (N, h)p-waves

These spacetimes are a subclass of the parallel waves which roughly correspond to
a standard pp-wave with a Riemannian manifold replacing the planar wavefront of a
pp-wave. That is, they are the parallel waves which the following conditions hold:

(i) In the adapted coordinates of theorem 3.1, the metric components of the wavefront
gab are independent of the coordinate u.

(ii) The spacetime decomposes as M = R
2 × N where (N , h) is a connected Rie-

mannian manifold.21 Note that this implies the coordinates u and v are globally
defined.

This amounts to a general parallel wave metric Eq. 25 with the additional constraint
that the metric on the transverse space h be independent of u. The name we suggest
for such spacetimes is in analogy to the “pp-wave” spacetimes (plane-fronted waves
with parallel waves) as here we have a wavefront (N , h) and the rays remain parallel,
as they are the integral curves of Z and Z remains, as always, covariantly constant.
Such spacetimes have also been called “generalised plane waves” [58] and “PFWs”
(plane-fronted waves) [54] & [59], but the authors find this suggested naming scheme
to be the most transparent and accurate. We may write the (N , h)p-wave metric as

g = 2dudv + H (u, x) du2 + 2Aa (u, x) dxadu + h. (45)

Wecanwrite thismetricwithout referencing coordinates on N ifwe instead consider
H as a map H : R → C∞(N ). That is for each u, H is a smooth function on N .

21 Previously the metric components on the wavefront were written locally as gab (x) dxadxb but here we
use the label h to refer to the global metric on the wavefront.
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Similarly for the mixed terms dxadu, we define A : R → �(T ∗N ) where �(T ∗N ) is
the space of sections of the cotangent bundle of N . With these redefinitions (unique
to this Section) we may write g as

g = 2dudv + H(u)du2 + 2A(u)du + h. (46)

Such spacetimes have been studied extensively in [54, 59], in which the geodesic
completeness, geodesic connectedness and causality have been determined.

3.6 Rosen coordinates of plane waves

The coordinates for plane waves which make manifest the symmetries/Killing vector
fields are called Rosen coordinates, after [60]. The transformation betweenBrinkmann
and Rosen coordinates is well-documented, for example see [23, AppendixA] and
[22, Sec. 2.8]. We simply present the local form of a plane wave metric in Rosen
coordinates, where we use capital letters for the coordinates U and V to emphasize
that they are not the same coordinate functions as in Brinkmann coordinates.

g = 2dUdV + Ki j (U ) dyidy j , (47)

where Ki j is positive-definite on the domain of validity of these coordinates. Note that
in such coordinates, the Minkowski metric could be represented as

η = 2dUdV + δi j dy
i dy j (48)

which is simply the usual metric written in light-cone coordinates. Rosen coordinates
can often exhibit (coordinate) singularities, and are therefore often avoided in favour
of Brinkmann coordinates [22, Sec. 2.9].

Generically, the plane wave metric has 2n−3 linearly independent Killing vectors,
which in a suitable basis generate the Heisenberg algebra [23, Sec. 2.1]. In Rosen
coordinates, half (+1) of the Killing vector fields are manifest (independent of Ki j )
and the remaining symmetries can be obtained in terms of Ki j , the inverse of Ki j . The
Killing vector fields are thus (as in [61, Eq. 2.11])

e+ = ∂

∂V
, ei = ∂

∂ yi
, e∗i = yi

∂

∂v
−

∑
j

∫
Ki j (U )dU

∂

∂ y j
. (49)

These correspond to the defining symmetry of the parallel wave Z and the trans-
lations and rotations of the y j . Note that the e∗i are the usual rotations when we have
Ki j = δi j , that is the Minkowski metric Eq. 48.
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4 Properties

4.1 Vanishing scalar invariants

Awell-known property of the pp-wave geometries is that all scalar curvature invariants
(a scalar constructed from the metric, Riemann tensor and covariant derivatives of the
Riemann tensor) are zero22 [51, 62]. Here, we will present a proof that all curvature
invariants of the plane waves vanish, and for the case of the general pp-wave, we direct
the reader to [62]. There are two approaches to prove this fact, the first by explicitly
calculating the curvature tensor and the second by showing that each point p in a plane
wave spacetime is the fixed point of a homothety, and that any curvature invariant must
be 0 at such a point. We will present the second such approach here, the proof of which
is due to Schmidt [63], where we follow closely the presentation in [22].

Theorem 4.1 All curvature invariants of a plane wave vanish.

Proof We will proceed via the following series of arguments:

1. An elementary curvature invariant cannot be invariant under constant rescalings
of the metric (called a homothety).

2. If there exists a coordinate transformation which induces a homothety, then due to
the previous point, at the fixed points of the transformation (i.e. points which are
invariant under the transformation) any elementary curvature invariant must be 0.

3. Any point in a plane wave is the fixed point of a homothety

These statements are proved as follows:

1. A general curvature invariant of a manifold (M, g) is constructed from the metric
and elementary curvature invariants. An elementary curvature invariant is obtained
by taking covariant derivatives of the Riemann tensor

∇μ1 . . .∇μp Rνλρ
μ

and “tracing out” all free indices with the inverse metric gμν . The Levi-Civita
connection ∇ is invariant under a constant rescaling of the metric (homothety),
which is conformal transformation, in which the conformal factor λ is a nonzero
constant

gμν −→ g̃μν = e2λgμν

That is, we have a second manifold (M, g̃) conformally related to (M, g) (the
homothety is in particular not an isometry). Since ∇ is invariant under such a
transformation, so too is the Riemann tensor. Since the (certainly not invariant)
inverse metric is required to make a scalar, the elementary invariants cannot be
invariant under such a homothety. Rather, a curvature invariant J will change as

J (x) −→ emλ J (x)

22 Of course in the context of a general parallel wave, the scalar invariants of the wavefront will be inherited
by the full spacetime.
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for some x ∈ M and some natural number m which depends on the order of J
(number of covariant derivatives).

2. Assume there exists a coordinate transformation of theLorentzianmanifold (M, g)
which induces a homothety with x a fixed point. Since x is a fixed point of the
homothety we have

J (x) = emλ J (x)

differing from above in the equals sign alone. Such an equality can only hold (for
natural m and constant nonzero λ) if J (x) = 0.

3. We simply need to construct the coordinate change for plane waves which induces
a nontrivial homothety. As in Sect. 3.6, any plane wave metric can be written in
the so-called “Rosen coordinates” as

g = 2dUdV + gi j (U )dyidy j .

Such a form exhibits obvious translational symmetry in the y j and v directions.
Due to these symmetries, without loss of generality we can take a general point to
be written as x = (u0, 0, 0), which is fixed point of the coordinate transformation

(u, v, y j ) −→ (u, λ2v, λy j )

for some constant λ. Such a coordinate transformation is in fact a homothety, and
scales the metric as g −→ λ2g. Since we have shown that this is true for general
u0, the result holds for any point (u, v, y) of a plane wave.

��
For further details of all classes of spacetimes in which the curvature invariants

identically vanish, see [62].

4.2 pp-waves via their wavefronts

Asmentioned in Definition 2 above, a distinguishing feature of a null vector field Z is,
of course, that it lies in its own orthogonal complement, Z⊥, leading to the Wavefront
Z⊥/Z , a vector bundle whose elements are equivalence classes “[X ]” of vector fields
X orthogonal to Z . Because such vector fields are necessarily spacelike (see, e.g., [47,
Lemma 28, p. 142]), Z⊥/Z will inherit a (positive-definite) inner product from the
Lorentzian metric g. It turns out that when Z is also parallel, as it is a for a pp-wave,
then Z⊥/Z will also inherit a well defined linear connection, and this can be used
to give an alternative—and very geometric—definition of a pp-wave. This alternative
formulation of a pp-wave, which we now provide, is well known; see, e.g., [64], [24,
Proposition 3]. In the following, �(E) represents the space of sections of the vector
bundle E .

Theorem 4.2 Let (M, g) be a Lorentzian manifold and Z a null, parallel vector field
defined in an open subset U ⊆ M, with orthogonal complement Z⊥ ⊂ TU. Then the
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wavefront Z⊥/Z admits a positive-definite inner product ḡ,

ḡ([X ], [Y ]) := g(X ,Y ) for all [X ], [Y ] ∈ �(Z⊥/Z),

and a corresponding linear connection ∇ : X(U) × �(Z⊥/Z) → �(Z⊥/Z),

∇V [Y ] := [∇V Y ] for all V ∈ X(U) and [Y ] ∈ �(Z⊥/Z).

This connection is flat if and only if (U, g|U) is a pp-wave.

Proof The metric ḡ will be well defined, and positive definite, whenever Z is null;
indeed, every X ∈ �(Z⊥) not proportional to Z is necessarily spacelike, so that ḡ
is nondegenerate (and positive-definite), and if [X ] = [X ′] and [Y ] = [Y ′], so that
X ′ = X + f Z and Y ′ = Y + kZ for some smooth functions f , k, then

ḡ([X ′], [Y ′]) = g(X ′,Y ′) = g(X ,Y ) = ḡ([X ], [Y ]).

On the other hand, the connection ∇ requires Z to be parallel or else it is not well
defined: ∇V Y ∈ �(Z⊥) if and only if Z is parallel, in which case

∇V [Y ′] = [∇V Y
′] = [∇V Y ] +������0[V (k)Z ] +�����0[k∇V Z ] = ∇V [Y ].

That ∇ is indeed a linear connection follows easily. Now, if this connection is flat,
then by definition its curvature endomorphism, which is the mapping

R : X(U) × X(U) × �(Z⊥/Z) → �(Z⊥/Z),

whose action is given by

R(V ,W )[X ] := ∇V [∇W [X ]] − ∇W [∇V [X ]] − ∇[V ,W ][X ],

will vanish, for any section [X ] ∈ �(Z⊥/Z) and vector fields V ,W ∈ X(U). Using
the metric ḡ, this flatness condition is equivalent to

ḡ(R(V ,W )[X ], [Y ]) = 0 for all V ,W ∈ X(U) , [X ], [Y ] ∈ �(Z⊥/Z).

But if we unpack the definitions of ∇ and ḡ, we see that

ḡ(R(V ,W )[X ], [Y ]) = Rm(V ,W , X ,Y ) = Rm(X ,Y , V ,W ). (50)

It follows that R = 0 if and only if R(X ,Y )V = 0 for all X ,Y ∈ �(Z⊥) and
V ∈ X(U); by (12) and Definition 3, this is precisely the condition to be a pp-wave. ��
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4.3 Penrose limits

We now outline the importance and prove the existence of the famous “Penrose limit”,
which assigns a plane wave metric Eq. 33 as a limit of any spacetime (M, g) in a
neighbourhood of a null geodesic γ . This is not a property of the parallel wavemetrics,
but rather a remarkable feature of all spacetimes. This fact was originally demonstrated
by Penrose in 1976 [65], where he described the limiting procedure as a null analogy to
the procedure by which one obtains the tangent space (that is, “zooming in” on a small
neighbourhood and scaling those neighbourhoods up in a complementary manner). It
is worth pointing out that applications of Penrose’s limit in physics continue to the
present day, particularly in higher dimensions and in relation to string theory and the
AdS/CFT correspondence; see, e.g., [66–68] and the references therein.

We adopt a different notation to that of Penrose’s work to be consistent with the
majority of modern literature regarding pp-waves, and in particular Theorem 3.1 of
this article. We take inspiration from the discussion of [69], who is consistent in
explicitlywriting the appropriate pullbackswhich appear only implicitly in the original
work [65].

Theorem 4.3 Consider an n-dimensional Lorentzian manifold (M, g). In a neighbor-
hood of a point on any conjugate-point free portion γ ′ of a null geodesic γ , one can
write the metric g in the so-called “null coordinates” as

g = 2dudv + Hdu2 + 2Aadx
adu + gabdx

adxb, (51)

where H, Aa and gab (with a, b ∈ 1, . . . , n−2) are smooth functions of the coordinates
and (gab) is a positive-definite matrix, i.e. a family of Riemannian metrics on the
(n − 2)-dimensional embedded submanifolds defined by u = const, v = const. One
could represent this metric in matrix notation as

g =

⎛
⎜⎜⎜⎜⎜⎝

H 1 A1 . . . An−2
1 0 0 . . . 0
A1 0
...

... (gab)
An−2 0

⎞
⎟⎟⎟⎟⎟⎠

. (52)

Note also that in these coordinates, γ is represented by the integral curve of ∂/∂v

which passes through the origin.

Proof First, define a vector field Z (suggestively labelled in analogy to Theorem 3.1)
such that along γ we have Z = γ̇ ′. Now we construct the coordinate u. The partial
differential equation

g(grad(u), grad(u)) = 0

with boundary condition grad(u) = Z on γ ′ is a Hamilton-Jacobi equation for u which
always admits local solutions (see [70, 585-588]).
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As is suggested by the similarity of the result, we take inspiration from the proof
of Theorem 3.1, noting that we no longer assume that Z be covariantly constant. The
necessary adjustment to the proof is as follows: That Z is nonzero in a neighbourhood
of γ ′ holds again by the fact that it is null, but also by the fact that γ ′ is geodesic, that
is ∇γ̇ ′ γ̇ ′ = 0. Thus the remainder of step 1 remains valid, and we may construct a

coordinate system {x̃0, v, x̃1, . . . , x̃n−2}with grad(u) = Z = ∂̃v via the straightening
theorem. Step 2 is not necessary in this context, as u has already been introduced by the
above argument. Step 3 follows as before, yielding a coordinate system {u, v, x} :=
{u, v, x1, . . . , xn−2} on an open setU ⊂ M containing γ ′. The form of the metric and
the positive-definiteness of (gab) then follow from parts (ii) and (iii) of Proposition 3.2.

��
Note that an alternative and succinct version of this proof was provided by [22, Sec.

4.3], but the reader should note that their “U , V ” is our “v, u”.
We now describe the limiting procedure by which one can “zoom in” on a null

geodesic (called the Penrose limit) while simultaneously scaling up the metric, in
a manner analogous to obtaining the tangent space of a Riemannian manifold. The
primary difference however is that in the Riemannian case, the space obtained via this
procedure is a flat space, whereas in the Penrose limit we will obtain an intrinsically
curved space, which will turn out to be the plane wave Eq. 33 written in the Rosen
coordinates of Sect. 3.6.

4.3.1 Limiting procedure: Penrose’s construction

This section follows Penrose’s original construction [65] but is presented in a more
modern language, in a self-containedmanner using the proofs of Sect. 3, and explicitly
generalised to arbitrary dimension. The procedure bywhichwewill define the Penrose
limit of a spacetime will be (schematically) as follows:

1. Take a spacetime (M, g) and write the metric in null coordinates in a neighbour-
hood of a null geodesic γ .

2. Define a new coordinate system whose coordinate functions are those of the null
coordinates divided by powers of a parameter  (which we will let go to 0 later,
causing those coordinates to “blow up”) and write g in these coordinates.

3. Define another metric h on M conformal to g with constant factor h = −2g
4. Show that in the limit → 0, h (that is,−2g) is simply themetric of a planewave.

This is the “Penrose limit” of (M, g) in a neighbourhood of γ , and importantly,
the construction was independent of the properties of the spacetime metric g. That
is, all spacetimes look like a plane wave when we simultaneously scale up the
coordinates and scale up the metric near a null geodesic γ , which amounts to
“zooming in” on γ , or equivalently, blowing up a neighbourhood of γ to cover the
whole spacetime.

To understand the complementary scaling of the coordinates and themetric, Penrose
interprets this procedure as first scaling up the coordinates to “blow up” the points
of interest (just as one does when looking at the tangent space of any point), then,
to account for the fact that a general curvature tensor will appear to blow up as the
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coordinates do, wemust simultaneously scale up themetric to scale down the curvature
tensor andobtainfinite results. Physically, Penrose interprets this procedure as boosting
an observer closer and closer to the speed of light, and a complementary re-calibration
of their clocks in such a manner so as to keep the affine parameter u along the null
geodesic γ invariant under the procedure. For details see the original work [65] and
[22, Sec. 4.4] for a more modern description.

We now begin the explicit construction. Consider an n-dimensional Lorentzian
manifold (M, g) and an open set U ⊂ M (containing a conjugate point-free segment
of a null geodesic γ ) on which the null coordinates Eq. 52 are defined, and label this
null coordinate chart ψ . Then consider the map φ := ϕ ◦ ψ : U → R

n where

ϕ : R
n → R

n

: (
u, v, x1, . . . , xn−2

) �→
(

u

2 , v,
x1


, . . . ,

xn−2



)

︸ ︷︷ ︸
=(ũ,ṽ,x̃1,...,x̃n−2)

for  > 0 a constant. The map φ is then a diffeomorphism onto its image φ(U ) ⊂
R
n for  �= 0. Define a metric23 h on φ(U ) whose representation in the tilde

coordinates is

h =

⎛
⎜⎜⎜⎜⎜⎝

2 H̃ 1  Ã1 . . .  Ãn−2
1 0 0 . . . 0

 Ã1 0
...

... (g̃ab)
 Ãn−2 0

⎞
⎟⎟⎟⎟⎟⎠

, (53)

where H̃ , the Ãa and the g̃ab are implicitly functions of all the tilde coordinates defined
(strategically) in the following manner

H̃ := H(2ũ, ṽ, x̃1, . . . , x̃n−2) = H(u, v, x1, . . . , xn−2),

Ãa := Aa(
2ũ, ṽ, x̃1, . . . , x̃n−2) = Aa(u, v, x1, . . . , xn−2),

g̃ab := gab(
2ũ, ṽ, x̃1, . . . , x̃n−2) = gab(u, v, x1, . . . , xn−2). (54)

The metric h is conformal to (φ−1
 )∗g, which can be seen as follows: First, by

definition of the tilde coordinate system and Eq. 54, we relate the components of g
and h as:

guv du ⊗ dv = du ⊗ dv = 2dũ ⊗ d ṽ = 2hũṽ dũ ⊗ d ṽ,

guu du ⊗ du = Hdu ⊗ du = 4Hdũ ⊗ dũ = 2hũũ dũ ⊗ dũ,

23 The metric h will turn out to be conformal to (φ−1
 )∗g, but we could also start from that fact and define

h := −2(φ−1
 )∗g and the calculate its explicit form, which will be Eq. 53.
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and one obtains a similar relationship for the remaining components:

gρσ dxρ ⊗ dxσ = 2hρσ dx̃ρ ⊗ dx̃σ . (55)

Second, since φ is a change of coordinates, it holds that

gρσ dxρ ⊗ dxσ = ((φ−1
 )∗g)ρσ dx̃ρ ⊗ dx̃σ (56)

and thus
((φ−1

 )∗g)ρσ dx̃ρ ⊗ dx̃σ = 2hρσ dx̃ρ ⊗ dx̃σ , (57)

that is, h and (φ−1
 )∗g are homothetic (conformal with constant conformal factor) as

h = 1

2 (φ−1
 )∗g. (58)

We now actually take the Penrose limit of (M, g, γ ), which is a neighbourhood of
γ in the spacetime formed by M equipped with the metric

lim
→0

1

2 (φ−1
 )∗g = lim

→0
h. (59)

In this limit in the tilde coordinates, h reduces to

lim
→0

h =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
1 0 0 . . . 0
0 0
...

... (g̃ab)
0 0

⎞
⎟⎟⎟⎟⎟⎠

, (60)

where (g̃ab) is now a function of ṽ = v only as g̃ab = gab(0, ṽ, 0, . . . , 0). This is
precisely the Rosen coordinate representation of the plane wave metric Eq. 47 (under
an appropriate relabelling/reordering of the coordinates).

What we have demonstrated is that in an appropriate limit around a null geodesic γ ,
any spacetime approaches a plane wave in a manner analogous to how a Riemannian
manifold locally approaches Euclidean space in an appropriate limit. A collection of
the Penrose limits of common spacetimes and a comprehensive overview of the prop-
erties of Penrose limits has already been established by [22], such as the hereditary
properties (those properties of the limit which are inherited from the original space-
time). A covariant description of the limiting procedure is also provided, making
significantly clearer the connection between the original metric g and the properties
of the resulting plane wave limit, which are encoded in the wave profile H when
written in the “Brinkmann coordinates” as in Eq. 33.

We close our discussion of Penrose’s limit by illustrating a family of examples.
These examples are taken from [68, Eqn. (3.1)], wherein full derivations can be found;
herewewrite down only the resulting planewave limit itself, restricting out attention to
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dimension 4. Indeed, for both the Scharzschild metric and the Friedmann–Lemaétre–
Robertson–Walker (FRW) cosmological models, their Penrose plane wave limits take
the following form in Brinkmann coordinates

ds2 = 2dudv +
2∑

a,b=1

Aabxaxb

u2
du2 + dx2 + dy2,

where each Aab is a constant depending on the original metric, and where x1 = x and
x2 = y.

4.4 Causality in parallel waves

We now review some basic results in the causal properties of parallel waves, starting
with the well-known “remarkable property of plane waves” proven by Penrose [71]
which spurred on much of this research.

4.4.1 A remarkable property of plane waves

Roughly, Penrose showed that a (not necessarily purely gravitational) plane wave
exhibits a “focusingproperty” on the null cones (seeFig. 1), and as a consequence, there
exists noCauchy hypersurface sufficient for the specification of Cauchy data [71]. This
is because the past null cone of any event is focused to a single point (anastygmatism) or
line (astygmatism), and since a Cauchy hypersurface has the property that it intersects
any causal curve exactly once, it is concluded that this focusing property forces many
causal curves to intersect any potential Cauchy hypersurface at least twice. In the
following, we maintain consistency with the notation of the original work wherever
possible.

To begin, let us first define the relevant objects. As in Sect. 3.3.1 (with a
small relabelling), a plane wave is defined as a 4-dimensional standard pp-wave in
adapted coordinates {u, v, x1, x2} for which the characteristic function H(u, x1, x2)
is quadratic in (x1, x2), that is the spacetime (M = R

4, g) where

g = 2 du dv + H(u, x1, x2) du2 + (dx1)2 + (dx2)2

H(u, x1, x2) =
2∑

i, j=1

hi j (u)xi x j

for some symmetric matrix formed by the hi j . We also define the null cone:

Definition 6 Null Cone The null cone (denoted κ3) at a point Q ∈ M is defined as the
set of points lying on all null geodesics through Q.

In this section, Penrose utilises the so-called “sandwich waves”, defined by the
characteristic that the amplitudes hi j (u) = 0 unless u ∈ (a, b) ⊂ R. One can visualise
such a plane wave as in Fig. 1, in which it becomes clear that a sandwich wave is a
plane wave for which the infinite extent in the u direction is removed.
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Fig. 1 (Left) The wave profile of a sandwich plane wave, in which the u coordinate range of the “curved”
region is (a, b). (Right) The focusing effect of such a wave on the past null cone of a point R in the
electromagnetic case. Figures from [71, Fig. 1 & 2]

We now outline the primary result of [71], where some details are omitted and only
the main steps of the proof are reproduced.

Theorem 4.4 The past null cone of any point Q in a plane wave (M, g)with compactly
supported profile (a “sandwich wave”) is focused to a single point for an electromag-
netic sandwich wave, or to a line for a gravitational sandwich wave.

Proof To begin, choose a point Q in the flat region of M , such that the components of
Q are

u = u0 < a, v = v0, xi = 0,

where a is the lower bound of the interval on which u is nonzero for the sandwich
wave. Close to Q, the equation of the null cone κ3 is (u − u0)(v − v0) − xi xi = 0
which can be written

v = fi j (u)xi x j + v0, (61)

where fi j (u) = (u−u0)−1δi j near Q. We nowwish to obtain a description of κ3 valid
away from Q, that is to find an appropriate fi j (u). If the surface is to remain null even
in the curved regions of M , then one can show that fi j should be both symmetric and
satisfy24

d

du
fi j + fik fk j + hi j = 0. (62)

With “initial condition” Eq. 61 one obtains an fi j which describes the null cone κ3
even in the curved region of (M, g). This extension is only valid while fi j is finite,
and so we now examine if and when fi j → ∞. To do so, consider the trace of the
above differential equation, noting that hi j is trace-free for a vacuum solution and in
general hii > 0.

d

du
fii + 1

2
fii f j j = −1

2

(
fik fikδ jlδ jl − fikδik f jlδ jl

) − hii ≤ 0

24 The original paper lists the condition as d
du fi j + fik fkl + hi j = 0, the l index likely being erroneous.
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via Schwarz’ inequality. Defining ρ(u) := 1
2

∫ u
u0

fii (ū)dū, one finds the integro-
differential inequality on the trace of f

d2

du2
ρ(u) ≤ 0, (63)

where the inequality is sharp for at least some values of u. Since our choice of u0 in
Q was arbitrary, consider the limit u0 −→ −∞. Then from the definition of fi j near
Q, we see that fi j = 0 ∀ u < a. Then via Eq. 61, we see that κ3 is described by the
equation v = v0, that is the null cone is a null hyperplane in the flat region. When
fi j = 0 then in particular ρ′ = 0 in the flat region (prime meaning u-derivative), and
therefore by Eq. 63 we have that a ρ which is positive in the flat region near Q will
become 0 for finite u. If ρ = 0 then some component of fi j must become singular.25

Denote the u at which fi j exhibits singularity by u1 > a (since for u1 ≤ a we have
fi j ≡ 0).
If this singularity occurs outside the curved region, i.e. u1 > b then the null cone

κ3 encounters a singularity on the “past” side of the sandwich wave. In fact, one needs
to consider large and negative u0 as opposed to the −∞ limit, but this does not affect
the relevant equations here.

Now consider the flat region containing this singularity. In this region Eq. 62 may
be written as p′i j = δi j where pi j is the inverse26 matrix to fi j , i.e. pi j f jk = δik . The
solution of this differential equation for pi j is

pi j (u) = uδi j − qi j

for constant and symmetric qi j (since f is symmetric). Therefore fi j has a singularity
whenever u is an eigenvalue for qi j . Either these eigenvalues are distinct or they are
degenerate, in which case qi j = u1δi j . In this degenerate case, pi j has the form
(u − u1)δi j , and κ3 has two vertices, namely P and the point R := (u1, v0, 0). This
is because the equation of κ3 reduces to a single point at both P and R, as in fig.1.
In fact, that κ3 is focused to a single point (anastygmatic) is specific to the purely
electromagnetic case in which hi j is purely diagonal. For the gravitational case, one
finds that κ3 is focused onto a line. Since the arguments used are very similar, we omit
this proof here. See [71] for details. ��

To explain why this result shows that plane waves are not globally hyperbolic,
consider a candidate for a Cauchy hypersurface. Such a hypersurface would have
to intersect the v-line through R. But then some of the other past-oriented lightlike
geodesics from R to Q have to be intersected twice. Looking to Fig. 1, a connected
spacelike hypersurface such as the proposed Cauchy hypersurface containing Q must
initially lie entirely in the past of (drawn as “below” on the diagram) the future null
cone of Q. A Cauchy hypersurface can never meet the null lineR1, as if it were to do

25 This is related to the fact that there are often coordinate singularities when writing a pp-wave metric
in Rosen coordinates, which originally lead to the belief that there did not exist non-singular plane wave
solutions of the full Einstein equations. See [71, footnotes 11,12] for details.
26 In the original reference this is written as pi j f jk = δi j , again likely to be erroneous.
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so then it would intersect the null geodesics through Q twice (since they are all focused
ontoR1). As a result, the proposed Cauchy hypersurface must “bend downwards” to
avoidR1, and can never extend through it while remaining everywhere spacelike, and
as in [71]: “Cauchy data on such a hypersurface could thus give no information for
specifying amplitudes for a parallel wave27 which might lie beyond R1”.

4.4.2 Generic position on the causal ladder

After Penrose showed that the plane waves are not globally hyperbolic, interest was
spurred in discovering the exact position of both the plane waves and pp-waves on the
causal ladder. This question has been categorically answered for the plane waves by
[72], and then for the (N , h)p-waves by [73]. Note that the causality properties of the
more general class of parallel waves does not appear to have been studied. Let us first
recall the causal ladder for Lorentzian manifolds:

Globally hyperbolic (∃ a Cauchy surface)
⇓

Causally simple (pasts and futures are closed + causality)
⇓

Causally continuous (“continuity” of pasts and futures + distinguishing)
⇓

Stably causal (∃ a global time function)
⇓

Strongly causal (� closed or “almost closed” causal curves)
⇓

Distinguishing (� points with same pasts and futures)
⇓

Causal(� closed causal curves)
⇓

Chronological (� closed timelike curves)
⇓

Non–totally vicious (∃ points p ∈ M with p �� p)

from [74, Sec. 3] and [75]. Note that “stably causal” was first understood as the
causality being a stable property under perturbations, but Hawking showed [76] that
this is equivalent to the existence of a global time function. Also note that x � ymeans
that x chronologically precedes y, that is there exists a future-directed chronological
(timelike) curve from x to y.

To make explicit our conventions, and to align with the conventions of [74] we
choose the signature of our spacetimes (M, g) to be (−,+, . . . ,+), i.e., a non-zero
vector field X ∈ T M is

• timelike ⇐⇒ g(X , X) < 0,

27 Curiously, this appears to be one of the first uses of the name “parallel wave”. Note however that this
phrasing is not consistent with the definitions of this article, and the object in question is more accurately
referred to as a “plane wave”.
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• lightlike ⇐⇒ g(X , X) = 0,
• spacelike ⇐⇒ g(X , X) > 0,

and we take the zero vector to be spacelike. We also use “causal” to mean lightlike
or timelike when referring to a vector field. Also to remain consistent with [73],
when dealing with parallel waves we will fix our time-orientation such that ∂v is past-
directed. We now examine the causal classification of the parallel waves, starting with
the relatively simple result:

Proposition 4.5 All (N , h)p-waves are chronological.

Proof For a parallel wave defined by a covariantly constant, null vector field Z , in the
adapted coordinates of Theorem 3.1, we have Z = ∇u = ∂v . For any future-directed
causal curve γ (s) = (u(s), v(s), x(s)) it holds that

u̇(s) = g(γ̇ (s), ∂v) ≥ 0

where the inequality is sharp for γ (s) timelike. Such an inequality prevents the exis-
tence of closed timelike curves, and thus the spacetime is chronological. ��

Being one of the “lower rungs” of the causal ladder, being chronological is not a
relatively strong restriction. We can however show that a generic (N , h)p-wave lies
one step higher on the ladder:

Theorem 4.6 All (N , h)p-waves are causal.

We will prove this theorem below using Proposition 4.7. The proof of this result
follows from [72, Scholium 4.11], which we will reproduce here. To do so, we first
introduce the concept of a quasi-time function.

Definition 7 Quasi-time function. On a Lorentzianmanifold (M, g) a smooth function
f : M �→ R is called a quasi-time function for (M, g) if

(i) ∇ f is everywhere nonzero, causal and past-directed, and if
(ii) every null geodesic segment γ such that f ◦ γ is constant, is injective.

Now we may reproduce the afformentioned [72, Scholium 4.11] for completeness,
which is stated as:

Proposition 4.7 Any spacetime admitting a quasi-time function is causal.

Proof Assume f is a quasi-time function as in Definition 7, then due to (i) we have
that f is strictly increasing along all future-directed timelike curves in M , and hence
(M, g) is chronological. We now prove causality by contradiction.

Assume (M, g) is not causal, then M would contain [72, Scholium 4.10] a non-
trivial, smooth, future-directed null geodesic segment γ̃ : [0, 1] → M with γ̃ (0) =
γ̃ (1) and γ̃ ′(0) = γ̃ ′(1).

Furthermore γ̃ may be extended to an inextendible geodesic γ : R → M by
letting γ (s) = γ̃ (s mod 1). Again because of (i) and by continuity of all the relevant
properties, f is non-decreasing along γ ; hence f ◦ γ (s) = λ0 for all s ∈ R, constant
λ0 ∈ R, whichwould contradict (i i), since γ (0) = γ (1). Thus, (M, g)must be causal.

��
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We now return to the proof of Theorem 4.6, armed with the knowledge of the above
proposition.

Proof of Theorem 4.6 All that we require is that any (N , h)p-wave admits a quasi-time
function. This is proven in [72, Lemma 4.1] and again is reproduced here. The claim
is as follows:

Claim:When an (N , h)p-wave is written in the adapted coordinates of Theorem 3.1,
the coordinate function u is a quasi-time function as in Definition 7.

To prove this, note that by definitionwe have a covariantly constant, null vector field
Z such that Z = ∇u = ∂v . Thus∇u is causal by definition. Since Z = ∇u is nontrivial
and covariantly constant, we have that ∇u is everywhere nonzero. Furthermore ∇u is
past-directed since ∇u = ∂v and the time-orientation on (M, g) can be determined
by the condition that ∂v be past-directed. Therefore point (i) in the definition of a
quasi-time function is satisfied.

Next, note that since the restriction of g (Eq. 45) to the null hypersurface �u0 :=
u−1(u0) for some u0 ∈ R is independent of the characteristic function H and the
wavefront is spacelike, the null geodesic segments will be of the form

γ : v ∈ R �→ (u0, v, x0) ∈ �u0 .

Such a map is injective, and thus point (i i) in the definition of a quasi-time function
also holds. ��

4.4.3 Conditions for stronger causal character

Wenow shift our focus to finding the conditions under which an (N , h)p-wave exhibits
stronger causality properties. This was the subject of [74], in which is was shown that
the criterion for determining causal character is the spatial asymptotic behaviour of the
characteristic function H (when the parallel wave is written in adapted coordinates),
and in some cases the completeness of the Riemannian manifold corresponding to the
wavefront. A summary of the results of this work [73, Sec. 7] is given in Table 2,
where one uses−H to classify asymptotic behaviour as opposed to H to be consistent
with work which will be presented in Sect. 5. A precise definition of the asymptotic
behaviour of H follows from:

Definition 8 SubquadraticGrowth.We say that−H(u, x) behaves subquadratically at
spatial infinity if there exists some x0 ∈ N (where N is the wavefront) and continuous
functions R1(u), R2(u)(≥ 0), p(u) < 2 such that:

−H(x, u) ≤ R1(u)d p(u)(x, x0) + R2(u) ∀ (u, x) ∈ R × N ,

where d is the distance canonically associated to the Riemannian metric on N . When
p(u) ≡ 2, then we say −H(u, x) behaves (at most) quadratically at spatial infinity.28

28 For the sake of completeness, one would similarly define superquadratic growth via −H(x, u) >

R1(u)d p(u)(x, x0) + R2(u) ∀ (u, x) ∈ R × N .
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Table 2 Causal properties of an (N , h)p-wave under certain conditions on the characteristic function H

Condition on H Causal character ∃ Examples

−H Superquadratic #⇒ Causal Non-distinguishing and globally
hyperbolic

−H Quadratic #⇒ Strongly causal Globally hyperbolic and
non-globally hyperbolic

−H Subquadratic &
wavefront complete

#⇒ Globally Hyperbolic

The rightmost column lists the (non-generic) causal character of certain examples with the corresponding
asymptotic behaviour of −H . Results as in [73]

In light of Table 2 we can identify H being quadratic as critical for the causal
behaviour, in the sense that small perturbations either in the superquadratic or in the
subquadratic direction may introduce significative qualitative differences in the causal
character.

5 The Ehlers–Kundt conjecture

The Ehlers–Kundt conjecture is a statement about the role of gravitational plane waves
(Eq. 33) in the mathematical description of gravitational waves. Roughly, it claims
that the plane waves act as a mathematical idealisation of gravitational waves, and was
originally stated as follows:

“Prove the plane waves to be the only complete pp-waves.”29

The conjecture can be stated in amoremodern language as follows, where the terms
“plane wave” and “classical pp-wave” are defined consistently with the nomenclature
of this article (see Table 1):

“Prove the plane waves to be the only geodesically complete, Ricci-flat classical
pp-waves.”

The conjecture stems from the idea that gravitational radiation should not arise in a
spacetime in which there is no source to create it. If a spacetime is complete and Ricci-
flat30 but the metric describes a propagating wave, then that wave would be produced
independent of any source. Since complete spacetimes are inextendible, that is they
are not part of some larger spacetime, we can be sure that we are not just “missing” the
part of the spacetime containing a source. If a vacuum spacetime contains a wave but is
not complete, it is certainly possible that we are missing the source in our description.

An analogy would be a room with light coming from behind a curtain. In this
analogy light is the pp-wave, “vacuum” means we cant see any lightbulbs (sources),

29 The Ehlers–Kundt conjecture originally contained the addendum “no matter which topology one
chooses”, but as discussed in [77] the extension of the conjecture to manifolds of general topology is
nontrivial. This extension was provided by [24], which reduces to the statement above under the appropri-
ate conditions.
30 For clarity, Ricci-flat = purely gravitational = vacuum = no matter present.
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Fig. 2 An analogy for the Ehlers–Kundt conjecture. Art courtesy of Christopher Martin

and completeness equates to removing the curtain, so we can see everywhere in the
room. If the curtain is present and we see light in the room, it is reasonable to say there
must be a source behind the curtain. However it seems impossible that there is light in
the room, we can see everywhere, and there is no lightbulb. To translate back to our
terminology, it seems it should be impossible that our spacetime contains a wave, is
complete, and is also Ricci-flat (Fig. 2).

Ehlers and Kundt [17] showed that the plane waves are always complete, even
in the vacuum case. That is they correspond to the apparently unphysical case of a
lit room with no curtain and no lightbulb. The Ehlers–Kundt conjecture assigns the
plane waves the role of mathematical idealisations, and claims that any other pp-wave
(25) must be incomplete, so that the source which “must have” created the waves is
simply not part of our description. This is strongly related to the fact proven by [71],
wherein Penrose shows that the plane waves are not globally hyperbolic, as discussed
in Sect. 4.4.1.

Spacetimes which are both31 complete and not globally hyperbolic are generally
considered unphysical, since the development of the spacetime from arbitrary initial
data in the initial value formulation of the Einstein equations is not unique in this
case. This construction is outlined in Sect. 4.4.1. The EK-conjecture for gravitational
pp-waves can be summarised as “spacetime is complete” ⇐⇒ it is a plane wave.
However since the ⇐# direction was already proven by [17], the conjecture in fact
only refers to the #⇒ direction.

Although there is no known counterexample (i.e. a complete classical pp-wave other
than the plane wave), the conjecture remains an open question. Significant progress
has been made in addressing it however, and the remainder of this section will outline
that progress. To begin, let us formulate the conjecture in more precise mathematical
terms, and focus our attention on the classical pp-waves on M = R

4 so that our metric
takes the form

g = 2dudv − V (u, x, y)du2 + dx2 + dy2, (64)

31 It is necessary to have both completeness and non-global hyperbolicity to claim the spacetime is unphys-
ical. This is because by removing a point from a globally hyperbolic spacetime, one “destroys” that global
hyperbolicity. If that spacetime can be extended (here, by adding that point back) to a globally hyperbolic
one, we should not consider it necessarily unphysical. However, a complete spacetime is inextendible,
meaning there is no possibility to “get back” the global hyperbolicity. For this reason, if a non-globally
hyperbolic spacetime is complete, we can safely consider it unphysical.
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where to be Ricci-flat/vaccum we must have that V := −H is harmonic in (x, y).
That is, Vxx + Vyy = 0. The Ehlers–Kundt conjecture in this case states: if (M, g) is
geodesically complete, then V (u, x, y) must be quadratic in (x, y). We may replace
the “complete” in the original statement with “geodesically complete” and study the
geodesic equations of (M, g). Upon calculating the geodesic equations, one finds

ü = 0 (65)

v̈ = u̇

2

(
u̇Vu(u, x, y) + 2ẋVx (u, x, y) + 2 ẏVy(u, x, y)

)
(66)

ẍ = − u̇2

2
Vx (u, x, y) (67)

ÿ = − u̇2

2
Vy(u, x, y), (68)

where a dot represents the derivative with respect to an affine parameter32 t . Since
the boundary conditions determine u entirely, and the completeness of v(t) evidently
depends only on the completeness of x(t) and y(t), in studying the completeness the
geodesic equations reduce to

ẍ(u) = −Vx (u, x, y),

ÿ(u) = −Vy(u, x, y). (69)

These equations can be recast as a Hamiltonian system by defining q(u) =
(x(u), y(u)), p = q̇ , and ∇ the Euclidean gradient on R

2, such that we have

ṗ = −∇V (u, q). (70)

In this section wewill use only V as opposed to H , in order to maintain the interpre-
tation as the potential of a dynamical system in classical mechanics. The Ehlers–Kundt
conjecture can be restated in this language as: Prove that for V (u, x, y) harmonic in
(x, y), if the Hamiltonian system ṗ = −∇V (u, q) admits global solutions for all
initial data, then the u-constant function V (u, ·) is an at most quadratic polynomial
in (x, y). As mentioned above, this statement has not been proven in general. Before
moving on to examine the special cases in which the conjecture have been proven,
beginning with the so-called polynomial EK-conjecture, we pause to mention a beau-
tiful connection this conjecture has with complex dynamics, an observation due to G.
Cox (private communication).

5.1 Relation to complex dynamics

In what follows, assume that V is independent of u (“autonomous”), and consider the
complex-valued function f : C → C constructed from the partial derivatives Vx , Vy

32 Note that since the solution for u(t) is at + b for constants a and b, then u can be used as an affine
parameter along the geodesic. This fact extends also to n dimensions and does not depend on the properties
of H .
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of V :
z = x + iy, f (z) = −Vx (x, y) + iVy(x, y). (71)

The Cauchy–Riemann equations are

−Vxx = Vyy, −Vxy = −Vyx ,

and observe that, while the second equation holds trivially, the first equation is satisfied
precisely when V (x, y) is harmonic (this is also the case for f (z) = Vy + iVx ). It
was shown in [78, Corollary 7.4] that, given any entire function f (z) (i.e., a function
holomorphic on the entire complex plane C), the complex-valued ODE

z̈ = f (z)

admits global solutions for all initial data if and only if f (z) is affine linear. If we
apply this result to Eq. 71, one finds

ẍ + i ÿ = z̈ = f (z) = −Vx + iVy, (72)

then [78, Corollary 7.4] yields that this system is complete if and only if Vxxx =
Vyyy = 0; i.e., if and only if V is quadratic in x, y. This is not quite a proof of the
EK-conjecture, however, since the pair of real ODEs to which Eq. 72 gives rise is not
the usual Hamiltonian system Eq. 70, but rather the following variation of it:

ẍ = −Vx , ẍ = Vy .

Indeed, to obtain the usual Hamiltonian ODEs we should have chosen instead the
function

f (z) = −Vx − iVy .

(See also Eq. 75 in Remark 5.1 below.) Unfortunately, this function is holomorphic
if and only if the harmonic function V is linear; indeed, owing to Eq. 71, this choice
of f (z) is precisely anti-holomorphic (i.e., its complex-conjugate is holomorphic).
We therefore come to the beautiful realization that the EK conjecture is the anti-
holomorphic analogue of [78, Corollary 7.4] and, as such, forms a bridge connecting
general relativity to complex dynamics. The main ingredient in the proof of [78,
Corollary 7.4] is a classification of the complete complex orbits of z̈ = f (z) which
shows that they must be isomorphic to certain Riemann surfaces [78, Proposition 3.2];
it is an intriguing question to see if the complete orbits of Eq. 70, in the case when V
is harmonic, can be similarly classified.

5.2 Polynomial EK-conjecture

In this section we will outline some of the work done by Flores and Sánchez in
[77], who studied the EK-conjecture in the case that the potential V is polynomially
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bounded. We refer to the case when V does not depend on u as the “autonomous
case”, that is V = V (x, y). The u-dependence of V is not restricted by any of the
previous discussion, and so it is natural to first consider the autonomous case. To make
statements about the completeness of trajectories, the authors make use of confinement
properties of the relevant ODEs, and so we begin by developing some intuition for
this:

5.2.1 Motivation for proof

As a point of entry into thinking about the Ehlers–Kundt conjecture, consider for a
moment the case when V is an autonomous harmonic polynomial that is even in y,
namely, V (x,−y) = V (x, y); e.g.,

V (x, y) = −x3 + 3xy2 and V (x, y) = −x4 + 6x2y2 − y4 (73)

are two such examples. The virtue of this class of harmonic polynomials is that, since
the partial derivative Vy is necessarily odd in y, we must have Vy(x, 0) = 0. As a
consequence, the ODE

ÿ = −Vy(x(t), y(t))

admits the trivial solution y(t) = 0, for which choice the remaining ODE in x takes
the form

ẍ = −Vx (x(t), 0). (74)

Any solution x(t) to Eq. 74 then yields a solution (x(t), 0) of our original two-
dimensional ODE—and the advantage to this approach is that Eq. 74 permits a much
easier blow-up analysis. Indeed, consider any autonomous harmonic polynomial that
is not even in y, but, like the examples in Eq. 73, has negative leading term in x :33

V (x, 0) = −(ad x
d + ad−1x

d−1 + · · · + a1x + a0), ad > 0 , d ≥ 3.

Then, since ad > 0, we can, by a translation x �→ x + a if necessary (which is an
isometry of the standard pp-wave metric), assume that each ai ≥ 0 as well. But now
with “every term negative”, it follows easily that the solution x(t) to Eq. 74 satisfying
x(0) = 1 and ẋ(0) = √

2ad must be bounded above (i.e. bounded below in absolute
value) by the corresponding solution to

V̄ (x) = −ad x
d , ẍ = V̄ ′(x(t)) = −dad x(t)

d−1.

33 In fact any harmonic polynomial that is even in y can be put in such a form by a rotation of the xy-plane,
where we note that rotations are isometries of the pp-wave metric, and that they also preserve the property
of being harmonic.
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since V < V̄ . This latter, bounding solution is

x̄(t) = b

(c − t)
2

d−2

, b :=
[ 2

ad(d − 2)2︸ ︷︷ ︸
> 0

] 1
d−2

, c := b
d−2
2 ,

which blows up in finite time. Thus, since |x(t)| is bounded below by a function that
blows up in finite time, it follows that the solution (x(t), 0) also blows up in finite
time.

What made this approach work? It was the property of being even in y that allowed
us to find geodesics that stay in a confined region of the xy-plane—namely, the x-axis—
which confinement simplified the resultingODEs to the point where their behavior was
dominated by the leading term of just one polynomial. This is an effective means of
symplifying the analysis, but, of course, not every harmonic polynomial is even in y.
The questions remains, therefore, as to whether this technique of “concentrating in
a particular region of the plane” can work in general. Indeed it was demonstrated in
[77] that this technique does work in full generality, thereby resolving the polynomial
case of the Ehlers–Kundt conjecture.

Remark 5.1 In their work on the polynomial case of the EK-conjecture [77] the authors
use a complex variable approach, wherein z := x + iy takes the place of the vector q
and similarly ż = p. There is a good reason that we should consider the polynomial
case in the complex numbers C as opposed to the real numbers. As explained in
[77, p. 5], in the autonomous case V : R

2 → R we may identify C with R
2. The

completeness of the trajectories of a potential V is equivalent to the completeness of a
corresponding vector field X on the tangent bundle, and there exists a well-established
theory about completeness of holomorphic vector fields X on C

2 in the case that they
are polynomial. The more general case where V is not polynomially bounded does not
admit an obvious advantage in the complex language. In this notation, the geodesic
equations take the form

ṗ = −∇V (q) #⇒ z̈ = −Vx (x, y) − iVy(x, y) (75)

For the purposes of this review, we will continue to explicitly write x and y in place
of z.

We now ask ourselves if the above ODE Eq. 75 admits global solutions for V
harmonic in (x, y), that is we wonder if the corresponding spacetime manifold in the
original statement of the EK conjecture is geodesically complete. In fact, this is an
open question in general. The following partial result by [58] became an important
motivation for the so-called polynomial EK-conjecture:

Theorem 5.2 (Candela, Romero & Sánchez ’13) For V : R
2 → R harmonic in

q := (x, y) ∈ R
2, if there is a constant b ∈ R such that V (q) ≥ −b|q|2 for all

q ∈ R
2, then the ODE q̈ = −∇V (q) admits global solutions for all initial data.

In other words, this is the statement that the Ehlers–Kundt conjecture holds in the
case that H = −V is subquadratic. We reproduce now a short version of the proof
which is originally due to G. Cox (private communication):
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Proof It is sufficient to assume b > 0. Since we have translated the original conjecture
to the realm of Newtonian dynamics, we may apply simple energy conservation

1

2
|p|2 + V (q) = E ⇒ |p|2 ≤ 2(E + b|q|2). (76)

We then bound |p| by |q| in the cases of negative and non-negative energy:

E < 0 ⇒ |p|2 ≤ 2b|q|2,
E ≥ 0 ⇒ 2

(
E + b|q|2

)
= 2(

√
E +√

b|q|)2 − 4
√
Eb|q|︸ ︷︷ ︸

≤2(√E+√
b|q|)2

. (77)

Such that in both cases we have the bound

|p| ≤ a + c|q| , a ≥ 0, c > 0. (78)

We can then bound |q(t)| using |q(0)| as follows:
∣∣∣∣
∫ t

0
p(s)ds

∣∣∣∣
︸ ︷︷ ︸
|q(t)|−|q(0)|≤

≤
∫ t

0
|p(s)|ds ≤

∫ t

0
(a + c|q(s)|)ds

︸ ︷︷ ︸
at+c

∫ t
0 |q(s)|ds

⇒ |q(t)| ≤ (|q(0)| + at) + c
∫ t

0
|q(s)|ds

⇒ |q(t)| ≤ (|q(0)| + at)ect︸ ︷︷ ︸
bounded on compact int.

where in the final step we have used the integral form of Grönwall’s inequality. The
result then follows by Picard-Lindelöf. ��

This result was proven in [58] even in the case that V is non-autonomous and
where |·| is replaced by a general distance function dg(· , ·) associated to a Riemannian
metric g. Therefore the previous result also holds true for a gravitational (N , h)-fronted
wave 45. That the EK-conjecture is true for a harmonic and subquadratic H = −V
motivates one to ask if the same is true for harmonic and polynomially bounded H .
This question was answered by [77], but before stating the theorem let us first make
precise the idea of a polynomially bounded H .

Remark 5.3 Following the terminology of [77], a function H : R × R
2 → R is

called “polynomially u-bounded” (meaning polynomially upper bounded along finite
u-times) when for each u0 ∈ R, there exists ε0 > 0 and a polynomial P0 : R

2 → R

such that H(u, q) ≤ P0(q) for all (u, q) ∈ (u0 − ε0, u0 + ε0) × R
2.

Note that we sayH is quadratically polynomially u-boundedwhen P0 can be chosen
of degree 2 for all u0 ∈ R.
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5.2.2 Outline of proof

The Polynomial EK-conjecture is stated as follows:

Theorem 5.4 (Flores & Sánchez ’19) Let V : R × R
2 → R be a polynomially u-

bounded C1-potential which is also C2 and harmonic in the pair of variables q = (x,
y). Then: all the solutions to the dynamical system Eq. 70 are complete if and only if
the function V (u, ·) is an at most quadratic polynomial for each u ∈ R.

We will present here only a rough outline of the arguments behind the proof, fol-
lowing loosely [77, Sec. 2.3]. The proof of Theorem 5.4 goes as follows:

(i) It is first shown that if a harmonic function V is upper bounded by a polynomial
of degree n, that is if V (x, y) ≤ A(x2 + y2)n/2 for some n ∈ N, A > 0 at large
(x, y), then V must itself be a harmonic polynomial of degree ≤ n.

(ii) The homogeneous, harmonic polynomials of degree m > 0 on R
2 form a

two-dimensional vector space. In the standard polar coordinates of R
2, such

polynomials take the form

pm(ρ, θ) = λmρm cos(m(θ + αm)) (79)

for λm > 0 and αm ∈ (−π, π ]. Therefore any harmonic polynomial P on R
2 of

degree n ∈ N can be written as

P(ρ, θ) =
n∑

m=0

pm(ρ, θ) (80)

for some p0 ∈ R. In particular, the autonomous potential V (q) of Eq. 75 can be
written as such a sum.34 For simplicity in this summary, let us take the simple
case of a homogeneous degree n > 2 polynomial Vn with λn = −1 and αn = 0,
that is Vn(ρ, θ) = −ρn cos(nθ). In the homogeneous case one can always obtain
this via rotations, scaling or adding a real number to V , none of which affect the
completeness or harmonic characters necessary for our discussion.

(iii) Consider the radial curves in polar coordinates γk(t) = (ρ(t), θ̂k), k ∈
{0, . . . , n − 1} where θ̂k := 2πk/n (n is the degree of the potential V being
considered). Such curves are solutions of q̈ = −∇Vn(q) if and only if the radial
component ρ(t) satisfies ρ̈(t) = nρn−1(t).

(iv) It is then proved that for any real number n > 2 andC1 function λ : [0,∞) → R,
the solutions of the differential inequality

ρ̈(t) ≥ nλρn−1(t) (81)

with initial conditions ρ(0) > 0 and ρ̇(0) > 0 are incomplete under the following
conditions:

34 The extension to the non-autonomous case contains some subtleties which are explained in detail in
[77, Sec. 2.1]. Loosely, for a polynomially u-bounded and non-autonomous potential V , the λm and αm of
Eq. 79 (and therefore Eq. 80) become continuous functions of u.
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(a) The solutions are incomplete if there exists some λ0 > 0 such that λ ≥ λ0.
(b) If λ(0) > 0 then there exists some k > 0 such that such that all solutions with

initial conditions ρ(0) > k or ρ̇(0) > k are incomplete.

The first of these points tells us immediately that the solutions γk satisfying
ρ̈(t) = nρn−1(t) are incomplete, as in this case λ is the constant function equal
to one, such that any 0 < λ0 < 1 provides the necessary bound. In fact a
confinement property is shown, whereby there exists regions “around” the γk
labelled Dk[ρ0, π/(2n)] such that trajectories starting in Dk[ρ0, π/(2n)] (with
suitable initial conditions) stay in Dk[ρ0, π/(2n)], and these confined solutions
satisfy the differential inequality Eq. 81, allowing us to prove that they too are
incomplete.

(v) The existence of the confining regions Dk[ρ0, π/(2n)] for a homogeneous poten-
tial Vn can be understood as follows: Along each γk = (ρ(t), θ̂k = 2πk/n),
Vn(ρ, θ) = −ρn cos(nθ) is decreasing and concave. Furthermore, the harmonic-
ity35 of Vn implies that ∂Vn

∂θ
(γk(t)) = 0 and that this is in fact aminimum. That is,

the θ̂k are stable equilibria of trajectories close to the γk . This can be visualised
by looking at the potential Vn for some choice of n. In Figure 3 the case n = 5
is demonstrated,36 in which one can see n = 5 different “channels” with centers
corresponding to the γk, k ∈ {0, . . . , 4}.

(vi) To prove the case in which V is not homogeneous, it is first written as a linear
combination of polynomials like Vn . Then the γk are no longer solutions of the
full dynamical system q̈ = −∇V (q), but it is shown that there still exists regions
“around” the γk labelled D[ρ0, θ+] which have qualitatively the same behaviour
as the Dk[ρ0, π/(2n)]. This is achieved by showing that the radial component of
a trajectory γ grows sufficiently fast compared to the angular oscillation that γ

never escapes the D[ρ0, θ+].
(vii) To prove the case when V is non-autonomous a similar procedure is followed to

that of the autonomous case, with some technical complications. The first notable
difference is that the polar expressions of a harmonic potential V (u, q) Eq. 79
and Eq. 80 become valid only on an interval in u, that is

pm(u, ρ, θ) = λm(u)ρm cos(m(θ + αm(u))), u ∈ (u0 − c, u0 + c) ⊂ R (82)

for some 0 < c ∈ R. Here we can only choose α(u0) = 0, and in general
α(u) �= 0. As a result, in the non-autonomous case we have that the θ̂k are no
longer constant:

θ̂k(u) = 2πk − α(u)

n
, k = 0, . . . , n − 1. (83)

35 Harmonicity implies that Vn ∼ cos(nθ) such that ∂Vn
∂θ

∼ sin(nθ) and evaluating at any θ̂k yields 0. This
is the easily shown to be a minimum by taking another derivative.
36 Note that a very similar Figure appears in [79, Fig. 1] in a slightly different but related context, as
discussed further at the end of this section.
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Fig. 3 Homogeneous degree-5 potential V5 as a surface (left) and contour plot (right). These images make
clear the n stable trajectories γk for k ∈ {0, . . . , n − 1}. The same features can be seen for any natural
number n > 2

The remaining differences follow a similar pattern, whereby objects become u-
dependent and are defined on intervals. However since the rough details are the
same as the autonomous case, these details will be omitted here.

Summary – Polynomial EK-conjecture
We first saw the Ehlers–Kundt conjecture, stated as:

“Prove the plane waves to be the only complete (gravitational) pp-waves.”

This was a statement about the completeness of the solutions of the geodesic equa-
tion for a metric g = 2dudv − V (u, x, y)du2 + dx2 + dy2 where V is harmonic in
(x, y). The geodesic equations were reduced to a Hamiltonian system ṗ = −∇V (q)

with q := (x, y) and p = q̇ . In mathematical terms, the conjecture states:

The solutions of ṗ = −∇V (q)

exist for all times
⇐⇒ V (u, x, y) is quadratic in(x, y).

The ⇐# direction is already known to hold (see Sect. 3.3.1), and the #⇒ direction
is an open question. The fact that a quadratically-bounded and harmonic V was proven
to have complete trajectories motivated us to ask what happens if the harmonic V is
polynomially bounded. This question was answered by [77] where it was proven that
for such a V , all the solutions to the dynamical system Eq. 70 are complete if and
only if the function V (u, ·) is an at most quadratic polynomial for each u ∈ R. That
is, the Ehlers–Kundt conjecture is proved to hold in the case that V is polynomially
bounded.

We may then ask ourselves if it is reasonable to expect that V be polynomially
bounded. In fact in the causal study, it was discovered that in the autonomous case
unless V were quadratically polynomially bounded, the pp-wavewould not be strongly
causal. For further evidence supporting such a bound see [77, Sec. 13. (b)]. Therefore
this is arguably the strongest known result addressing the EK conjecture. It is not, how-
ever, the only one; indeed, in the case of an autonomous potential, the EK conjecture
has also been settled in the case when the spacetime is strongly causal, in [80].
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It should also be mentioned that exactly the behavior of geodesics in geometries
studied in this section (those for which V is a harmonic polynomial that is even in
y) have been studied extensively, wherein it was demonstrated via a fractal method
that the geodesic flow is chaotic in nature. The geodesics escape to infinity along
one of the channels which appear in Fig. 3 in this article (and in Fig. 1 of [79]). For
details see also [81] and [82]. This phenomenon was further studied in the context of
the sandwich waves in [83], wherein it was demonstrated that as the support of the
curved region approaches zero (the so-called “impulsive waves”) the geodesic motion
becomes integrable.

5.3 The compact case

Onemay alsowonder if theEhlers–Kundt conjecture could be answered in the case that
a pp-wave (M, g) is a compact Lorentzian manifold, since such manifolds are known
to be complete under a wealth of circumstances.37 Some examples include when they
are flat, have constant curvature, are homogeneous (and even locally homogeneous in
the 3 dimensional case), or admit a time-like conformal Killing vector field [24, p. 2].
Unfortunately, general pp-waves do not satisfy any of these properties, and so some
additional results are required to address the EK conjecture in this case. The question
of completeness for compact pp-waves has indeed been answered by [24], and that
work is the subject of this section.

Example Compact pp-wave. Consider the flat metric h on the n-torus T
n , then the

product manifold M = T
2 × T

n with the metric

g = 2dθdφ + 2Hdθ2 + h

with H ∈ C∞(Tn) is compact and is in fact a standard pp-wave with defining covari-
antly constant vector field represented as ∂φ . Note however that a “wave” is not a very
accurate name in the compact case, since as mentioned in Sect. 2.3 it is the (null)
asymptotics which signal the physical presence of radiation, and the compact case
does not admit the same notion of “null infinity” as was used to define the presence
of radiation.

The principal results of [24] can be summarised as follows:

(A) The universal cover of a compact pp-wave is globally isometric to a standard
pp-wave (Eq. 31)

(B) Every compact pp-wave (M, g) is geodesically complete.
(C) Every compact Ricci-flat pp-wave is a plane wave.

Point A is instrumental in proving point B. Point B appears to be in contradiction
to the EK conjecture, but such an apparent problem is resolved by point C. That is,
there are no non-plane compact vacuum pp-waves, so we need not wonder about
their completeness on physical grounds. Thus these results solve the Ehlers–Kundt

37 Though compact Lorentzian manifolds are not always complete, in contrast to compact Riemannian
manifolds which are always complete (see Hopf–Rinow theorem [84]).
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conjecture in the compact case. Or rather, the authors have proven that one need not
conjecture about the incompleteness of non-plane vacuum compact pp-waves, as there
are no such pp-waves. The remainder of this section will outline the methods by which
these results are obtained. Let us begin with result (A) in more detail:

Theorem 5.5 The universal cover of an n-dimensional38 compact pp-wave defined by
a covariantly constant null vector field Z is globally isometric to a standard pp-wave
(Eq. 31) which can be written as

(Rn, gH = 2dudv + H (u, x) du2 + δabdx
adxb)

and under this isometry, the lift of Z is mapped to the coordinate vector field ∂
∂v

Though we don’t present the proof of this theorem here, we remark that it makes
significant use of the “screen bundle” which is closely related to the “wavefront” of
our Definition 2. However, as remarked in [24, footnote 2] in the compact case this
nomenclature is perhaps inappropriate. Using Theorem 5.5, it is then proven that:

Theorem 5.6 Every compact pp-wave (M, g) is geodesically complete.

To prove this statement, let us first examine the completeness of a standard pp-
wave (Eq. 31). Then via Theorem 5.5 we can make statements about the completeness
of compact pp-waves. Recall that a standard pp-wave may be written in the global
coordinate chart {u, v, x1, . . . , xn−2} as

g = 2dudv + H (u, x) du2 + δabdx
adxb. (84)

Proposition 5.7 [24, lemma 8] The standard pp-wave metric is geodesically complete
if

∣∣∣∣
∂2H

∂xi∂x j

∣∣∣∣ ≤ c

for 0 < c ∈ R for all i, j ∈ {1 . . . , n − 2}

Proof Let us examine the geodesic equations of the standard pp-wave metric: For a
curve γ with components (u(s), v(s), x1(s), . . . , xn−2(s)), the geodesic equation for
the u-component is given by:

ü(s) = 0 #⇒ u(s) = as + b for some a, b ∈ R

38 Note that the authors of the original work [24] use n as the dimension of only the wavefront, and in this
article it is the dimension of the spacetime. Therefore n thisarticle = n Leistneretal. + 2. Similarly, a different
convention on H is used, such that the H thisarticle = 2HLeistneretal. This does not impact the methods used
in any meaningful way.
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that is, the u component is defined on all of R. The remaining components of the
geodesic equations are given by

v̈(s) = −2aẋk(s)
∂H

∂xk
− a2

∂H

∂u
, (85)

ẍ k(s) = a2
∂H

∂xk
. (86)

Since the v equation only depends on the xk and not on v, then the solution is defined
on R provided that the xk are defined on R. Unfortunately the xk equation does not in
general admit solutions on all ofR. An example (as in [85]) is foundwhen H = 1

2 (x
j )4

for some j ∈ {1, . . . , n − 2}. In this case, the only nontrivial equation (when a �= 0)
for the xk(s) is

ẍ j (s) = 2a2(x j )3

which has solution

x j (s) = 1

1− as
, s ∈ (−∞, 1/a).

Since this solution develops a singularity, so too does the solution for v, and we
conclude that the standard pp-wave is geodesically incomplete in this case. So then
when are the solutions of the ẍ k equations defined on all of R (thus making the pp-
wave geodesically complete)? This is guaranteed when the second derivatives of H
are bounded; as then by the mean value theorem the first derivatives are Lipschitz
continuous which suffices in view of the Picard–Lindelöf theorem. ��

One may think that this result yields many examples of complete pp-waves which
are non-plane (and are instead just bounded in second derivative of H ) but in fact
we have not imposed that the pp-wave is gravitational. For a gravitational pp-wave
H is harmonic, and a harmonic function can only have bounded second derivatives
(corresponding to a complete pp-wave by the previous proposition) if it is quadratic
and thus a plane wave.39

In order to apply this result to our case, that is to prove that a compact pp-wave is
geodesically complete (Theorem 5.6), we must prove that the second derivatives of H
are bounded in the compact case. The following proposition resolves this question:

Proposition 5.8 Consider a compact pp-wave. By Theorem 5.5, its universal cover is
a standard pp-wave (Rn, g = 2dudv+ H (u, x) du2+ δabdxadxb). Then the second
derivatives of H are bounded

0 ≤ ∂2H

∂xi∂x j
≤ c ∀ i, j = 1, . . . , n − 2.

39 Note that this is the content of Remark 5 of the original work [24]. Their Remark 5 concludes with
“thus a pp-wave”, but this should in fact read “thus a plane wave”. The correct conclusion is reached in this
article, and we thank Prof. Leistner for confirming.
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Proof We again omit the proof in favour of brevity. See [24, lemma 9]. ��
Thus one arrives at a proof of theorem (B):

Proof Let (M, g) be a compact pp-wave. By theorem (A) the universal cover is iso-
metric to a standard pp-wave, and by the above proposition such a standard pp-wave
is complete. Therefore (M, g) itself is complete. ��

We finally arrive at the statement which resolves the EK conjecture in the case of
compact pp-waves.

Theorem 5.9 [24, Corollary 1] Every compact Ricci-flat pp-wave is a plane wave.40

Proof Let (M, g) be a compact pp-wave and let (Rn+2, gH ) be the standard pp-wave
that is globally isometric to the universal cover of (M, g). As in Proposition 5.8, we
have that the second derivatives of H are bounded. If g is Ricci-flat, so too is gH , and
thus H is harmonic with respect to the xi directions

n−2∑
i=1

∂2i H = 0.

But this implies that also ∂i∂ j H is harmonic in the same sense, and thus, by the maxi-
mum principle for harmonic functions [86, page 7], independent of the xi components.
Hence,

H(u, x) =
n−2∑
i, j=1

ai j (u)xi x j + bi (u)xi + c(u),

where ai j , bi and c depend only on u and not the xi , and thus since H is quadratic in
xi , (M, g) is a plane wave. ��

Therefore as stated, one need not conjecture about the incompleteness of non-plane
vacuum compact pp-waves, as there are no such pp-waves. As a result, the Ehlers–
Kundt conjecture has been resolved in the compact case.

5.4 Case of failure

Let us outline very briefly the following case in which the Ehlers–Kundt conjecture is
known not to hold:

Impulsive case
Though usually omitted for brevity in this article, the continuity of the characteristic
function H of a pp-wave in u of the adapted coordinates is in fact vital. To quote from
[77, Sec. 1.3 (d)]:

40 Note that there are examples of compact non-plane pp-waves, but they are not Ricci-flat.
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Impulsive waves have a non-continuous profile type H(u, z = (x, y)) =
f (z)δ(u) for some (generalized) delta-function δ and smooth f . Thus, the func-
tion H can be regarded as z-harmonic when � f = 0. The mentioned results
of completeness yield counterexamples to the EK conjecture in the impulsive
setting, showing the necessity of continuity in u as well as the appropriate
smoothness of H .

This necessary smoothness and continuity in the non-autonomous case (H not
independent of u) amounts to

• H should be C1 in u (for constructing Levi-Civita Connection)
• H should be C2 in z (to impose harmonicity, i.e. vacuum condition)

(Note that, in the second condition, being C2 in z is equivalent to being analytic in
z, a well known property of harmonic functions (see, e.g., [87, Theorem 1.28]). For
the relevant references in the study of such impulsive waves, consult [77, Sec. 1.3 (d)].
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A Proof of Theorem 3.1

Note the same notation as described at the beginning of Sect. 3 will be used throughout
this proof. We also reproduce the statement of the theorem here for completeness.

Theorem A.1 (Coordinates adapted to a covariantly constant41 null vector field) If a
Lorentzian manifold (M, g) admits a covariantly constant, null vector field Z, then in
a neighbourhood U of each p ∈ M there exists a local coordinate chart ϕ = {u, v, x}
on U which is “adapted to Z” such that

Z |U = ∂v = ∇u.

Proof We perform this proof in three steps: first we construct local coordinates in
which Z is a coordinate vector field, then we show there exists a function u : M �→ R

41 Note that for this particular result, one may relax the condition that Z be covariantly constant. For details
see Sect. 4.3. In this context however, Z is always assumed to be covariantly constant.
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such that Z = grad(u) = ∇u. Finally we show that such a function u may replace
one of the coordinate functions in the initially constructed system, while maintaining
the property Z = ∂v , giving the desired result.

Step 1: Local coordinates including v
First note that Z is nowhere 0. This is because the zero vector is by convention

spacelike, but by definition Z is everywhere null. This can also be seen from the fact
that Z is Killing, since the Killing condition is trivially satisfied. A Killing field is
uniquely determined by Z |p and ∇Z |p for some p ∈ M . Therefore since ∇Z = 0
everywhere, if for some p we had Z |p = 0 then Z would be identically 0.

By the straightening (or “flow-box”, or “canonical form”) theorem [88, Theorem
2.4.3] for vector fields, since Z is everywhere regular (i.e. nonzero), we can always
construct a local coordinate systemsuch that Z is a coordinate vector field.We label this
coordinate v, such that we have Z = ∂̃v in the local coordinates {x̃0, v, x̃1, . . . , x̃n−2}.
We define these coordinates with a tilde because we are interested in constructing a
new coordinate system from these coordinates, and v is the second coordinate to agree
with usual pp-wave notational conventions. Let us also write the coordinate vector
fields for this coordinate system with a tilde as ∂̃v and ∂̃i .

Step 2: Introducing the coordinate u
To obtain the function u, let us consider the one-form Z dual to Z via the metric g.

As shown in “AppendixB”, the exterior derivativedω of a one-formω is proportional to
Alt(∇ω), the antisymmetric part of the two-form∇ω. Since Z is covariantly constant,
by the compatibility of the metric with∇ we have that∇Z = 0 and thus Alt(∇Z ) =
0. Therefore d(Z ) = 0, that is Z is closed, and via the Poincaré lemma for covector
fields,42 any closed one-form can locally be written as Z = du for some function
u : M → R. Then by definition of the gradient, we have Z = grad(u) = ∇u.

Step 3: Constructing the local coordinate system {u, v, x}
We now transform the coordinate system {x̃0, v, x̃1, . . . , x̃n−2} into a new coordi-

nate system {u, v, x1, . . . , xn−2}, and show that the property Z = ∂v also holds in the
new coordinates.43 To find the appropriate transformation, first consider du acting on
the coordinate vector fields ∂̃i . We have du(∂̃v) = Z (Z) = g(Z , Z) = 0 and we
define du(∂̃i ) =: ci where the ci are smooth functions on M . Since the coordinate
vector fields form a frame, at any p ∈ M we cannot have ci = 0 for all i and c0 = 0,
as if this were true we would have du(X) = 0 for all vector fields X , which in turn
implies du = Z = 0. But since Z is nonzero, so too is Z . Without loss of general-
ity, assume that c0 �= 0 (can always be done by reordering/relabelling the coordinate
system).

We now claim that by replacing x̃0 by u and taking xi = x̃ i for i ∈ {1, . . . , n− 2},
the set of functions {u, v, x1, . . . , xn−2} form a valid coordinate system. This can be

42 For details see Lee, Smooth manifolds (2nd edition) Theorem 11.49 and Corollary 11.50.
43 It is necessary to show this even though the function v is used in both coordinate systems, as given n func-

tions f̃ i with linearly independent differentials d̃ f
i
, we may form a local coordinate system { f̃ 1, . . . , f̃ n}

in which the coordinate vector fields ∂̃i are determined by the n2 equations d̃ f
j
(∂̃i ) = δ

j
i . That is, the

coordinate vector field ∂̃i depends on all the coordinate functions. If we transform to a new coordinate

system { f 1, . . . , f i−1, f̃ i , f i+1, . . . , f n} which contains f̃ i , we have ∂i = ∂̃i ⇐⇒ d f j (∂̃i ) = δ
j
i for

all j .
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achieved by verifying that the Jacobian J of the coordinate transform is invertible.
This is easily seen from the fact that J in Eq. 87 (where 1n−1 is the identity matrix in
n − 1 dimensions) has linearly independent columns for c0 �= 0.

J=

⎛
⎜⎜⎜⎜⎜⎝

du(∂̃0) dv(∂̃0) dx1(∂̃0) . . . dxn−2(∂̃0)

du(∂̃v) dv(∂̃v) dx1(∂̃v) . . . dxn−2(∂̃v)

du(∂̃1) dv(∂̃1) dx1(∂̃1) . . . dxn−2(∂̃1)
...

...
...

. . .
...

du(∂̃n−2) dv(∂̃n−2) dx1(∂̃n−2) . . . dxn−2(∂̃n−2)

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

c0 0 · · · · · · · · · · · 0
0
c1
...

1n−1

cn−2

⎞
⎟⎟⎟⎟⎟⎠

(87)
It remains to show that Z = ∂v in the new coordinates. That is, we must have

du(Z) = dxi (Z) = 0 for all i ∈ {1, . . . , n− 2} and dv(Z) = 1. This however can be
read directly from the second row of the Jacobian (Equation 87). We therefore have
that {u, v, x} := {u, v, x1, . . . , xn−2} is a valid local coordinate system on M . ��

B Exterior derivative of k-forms

The following is based on [89]. There are two primary conventions for defining a
wedge product, which are in fact proportional to each other. The first is that which is
used in [90]: for α a k-form and β an l-form

α ∧ β = (k + l)!
k!l! Alt(α ⊗ β). (88)

The second is that of [91], and is given by

α ∧ β = Alt(α ⊗ β) (89)

In both cases, the wedge product is proportional to Alt(α ⊗ β). Let us choose
convention 1 and write explicitly Alt(∇ω) for a k-form ω

Alt(∇ω) (X1, · · · , Xk+1) = 1

(k + 1)!
∑

σ∈Sk+1

(sgn σ)∇ω
(
Xσ(1), · · · , Xσ(k+1)

)
(90)

for smooth vector fields X j . The exterior derivative of a k-form ω is given by

dω (X1, · · · , Xk+1) =
k∑

i=1

(−1)i+1Xi
(
ω

(
X1, · · · , X̂i , · · · , Xk+1

))

+
∑
i< j

(−1)i+ jω
([
Xi , X j

]
, X1, · · · , X̂i , · · · , X̂ j , · · · , Xk+1

)
,

(91)
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where the X̂ j denotes that the argument X j is to be omitted. By taking an alternating
product proportional to the wedge product with any constant of proportionality (i.e.
convention) and comparing both the dω and Alt(∇ω) in Riemann normal coordinates
(as they are both tensors and thus can be compared pointwise), one finds that the
expressions simplify greatly and are indeed proportional to each other.

References

1. Holst, M., et al.: The emergence of gravitational wave science: 100 years of development of math-
ematical theory, detectors, numerical algorithms, and data analysis tools. Bull. Am. Math. Soc. 53,
513–554 (2016). https://doi.org/10.1090/bull/1544

2. Sormani, C.: A two-part feature: the mathematics of gravitational waves. Not. Am. Math. Soc. 64,
684–685 (2017). https://doi.org/10.1090/noti1551

3. Stephani, H., et al.: Exact Solutions of Einstein’s Field Equations. Cambridge Monographs on Math-
ematical Physics, 2nd edn. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/
CBO9780511535185

4. Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge Mono-
graphs on Mathematical Physics. Cambridge University Press, Cambridge (2009). https://doi.org/10.
1017/CBO9780511635397

5. Griffiths, J.B.: Colliding Plane Waves in General Relativity. Dover Publications, New York (2016)
6. Bonnor, W.B., Griffiths, J.B., MacCallum, M.A.H.: Physical interpretation of vacuum solutions of

Einstein’s equations. Part II. Time-dependent solutions. In: General Relativity and Gravitation (1994).
https://doi.org/10.1007/BF02116958

7. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs
on Mathematical Physics. Cambridge University Press, Cambridge (1973). https://doi.org/10.1017/
CBO9780511524646

8. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman, San Francisco (1973)
9. Carmeli, M., Charach, C., Malin, S.: Survey of cosmological models with gravitational, scalar and

electromagnetic waves. Phys. Rep. 76, 79 (1981). https://doi.org/10.1016/0370-1573(81)90171-X
10. Belinski, V., Verdaguer, E.: Gravitational Solitons. Cambridge Monographs on Mathematical Physics.

Cambridge University Press, Cambridge (2001). https://doi.org/10.1017/CBO9780511535253
11. Lämmerzahl, C., Perlick, V.: Gravitational Waves—Lecture Notes. https://www.zarm.uni-bremen.de/

fileadmin/user_upload/space_science/gravitational_theory/gravwave.pdf
12. Baldwin, O.R., Jeffery, G.B., Filon, L.N.G.: The relativity theory of plane waves. Containing papers

of a mathematical and physical character. Proc R Soc Lond Ser A 111(757), 95–104 (1926). https://
doi.org/10.1098/rspa.1926.0051

13. Bondi, H.: Plane gravitational waves in general relativity. Nature (1957). https://doi.org/10.1038/
1791072a0

14. Peres, A.: Null electromagnetic fields in general relativity theory. Phys. Rev. 118, 1105–1110 (1960).
https://doi.org/10.1103/PhysRev.118.1105

15. Kundt, W.: The plane-fronted gravitational waves. Z. Angew. Phys. 163(1), 77–86 (1961). https://doi.
org/10.1007/BF01328918

16. Kundt, W., Whitrow, G.J., Bondi, H., Bohm, D., Bonnor, W.B., Trautman, A., Synge, J.L., Lichnerow-
icz, A.: Exact solutions of the field equations: twist-free pure radiation fields. Proc. R. Soc. Lond. A
270, 328–334 (1962). https://doi.org/10.1098/rspa.1962.0224

17. Jordan, P., Ehlers, J., Kundt, W.: Republication of: exact solutions of the field equations of the general
theory of relativity. Gener. Relativ. Gravit. 10, 10 (1960). https://doi.org/10.1007/s10714-009-0869-8

18. Einstein, A.: Näherungsweise Integration der Feldgleichungen der Gravitation. In: Sitzungsberichte
der Königlich Preußischen Akademie der Wissenschaften, Berlin, pp. 688–696 (1916)

19. Flanagan, É.É., Hughes, S.A.: The basics of gravitational wave theory. N. J. Phys. 7, 204 (2005). https://
doi.org/10.1088/1367-2630/7/1/204

20. Carroll, S.M.: Lecture Notes on General Relativity. arXiv:9712019 [gr-qc]
21. Maleknejad,A.:MPALectures onGravitationalWaves inCosmology. https://wwwmpa.mpa-garching.

mpg.de/~komatsu/lecturenotes/Azadeh_Maleknejad_on_GW.pdf

123

https://doi.org/10.1090/bull/1544
https://doi.org/10.1090/noti1551
https://doi.org/10.1017/CBO9780511535185
https://doi.org/10.1017/CBO9780511535185
https://doi.org/10.1017/CBO9780511635397
https://doi.org/10.1017/CBO9780511635397
https://doi.org/10.1007/BF02116958
https://doi.org/10.1017/CBO9780511524646
https://doi.org/10.1017/CBO9780511524646
https://doi.org/10.1016/0370-1573(81)90171-X
https://doi.org/10.1017/CBO9780511535253
https://www.zarm.uni-bremen.de/fileadmin/user_upload/space_science/gravitational_theory/gravwave.pdf
https://www.zarm.uni-bremen.de/fileadmin/user_upload/space_science/gravitational_theory/gravwave.pdf
https://doi.org/10.1098/rspa.1926.0051
https://doi.org/10.1098/rspa.1926.0051
https://doi.org/10.1038/1791072a0
https://doi.org/10.1038/1791072a0
https://doi.org/10.1103/PhysRev.118.1105
https://doi.org/10.1007/BF01328918
https://doi.org/10.1007/BF01328918
https://doi.org/10.1098/rspa.1962.0224
https://doi.org/10.1007/s10714-009-0869-8
https://doi.org/10.1088/1367-2630/7/1/204
https://doi.org/10.1088/1367-2630/7/1/204
http://arxiv.org/abs/gr-qc/9712019
https://wwwmpa.mpa-garching.mpg.de/~komatsu/lecturenotes/Azadeh_Maleknejad_on_GW.pdf
https://wwwmpa.mpa-garching.mpg.de/~komatsu/lecturenotes/Azadeh_Maleknejad_on_GW.pdf


Exact parallel waves in general relativity Page 57 of 59    40 

22. Blau, M.: Plane Waves and Penrose Limits. http://www.blau.itp.unibe.ch/lecturesPP.pdf
23. Blau, M., O’Loughlin, M.: Homogeneous plane waves. Nuclear Phys. B 654(1–2), 135–176 (2003).

https://doi.org/10.1016/s0550-3213(03)00055-5
24. Leistner, T., Schliebner, D.: Completeness of compact Lorentzian manifolds with abelian holonomy.

Math. Ann. 364(3–4), 1469–1503 (2015). https://doi.org/10.1007/s00208-015-1270-4
25. Globke, W., Leistner, T.: Locally homogeneous pp-waves. J. Geom. Phys. 108, 83–101 (2016). https://

doi.org/10.1016/j.geomphys.2016.06.013
26. Sippel, R., Goenner, H.F.M.: Symmetry classes of pp-waves (1986). https://doi.org/10.1007/

BF00763448
27. Stephani, H.: Relativity: An Introduction to Special and General Relativity. Cambridge University

Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511616532
28. Bicak, J.: Selected solutions of Einstein’s field equations: their role in general relativity and

astrophysics. In: Schmidt, B.G. (ed.) Lecture Notes on Physics, vol. 540, pp. 1–126 (2000).
arXiv:gr-qc/0004016 [gr-qc]

29. Bicak, J., Podolsky, J.: Gravitational waves in vacuum space-times with cosmological constant. 1.
Classification and geometrical properties of nontwisting type N solutions. J. Math. Phys. 40, 4495–
4505 (1999). https://doi.org/10.1063/1.532981. arXiv:gr-qc/9907048 [gr-qc]

30. Bondi, H., Pirani, F.A.E., Robinson, I.: Gravitational waves in general relativity III. Exact plane waves.
In: Proceedings of the Royal Society (1959). https://doi.org/10.1098/rspa.1959.0124

31. Goswami, R., Ellis, G.F.R.: Tidal forces are gravitational waves (2020). arXiv:1912.00591 [gr-qc]
32. de Felice, F., Bini, D.: Classical Measurements in Curved Space Times. Cambridge Monographs

on Mathematical Physics. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/
CBO9780511777059

33. Szekeres, P.: The Gravitational compass. J. Math. Phys. 6, 1387–1391 (1965). https://doi.org/10.1063/
1.1704788

34. Podolsky, J., Svarc, R.: Interpreting spacetimes of any dimension using geodesic deviation. Phys. Rev.
D 85, 044057 (2012). https://doi.org/10.1103/PhysRevD.85.044057. arXiv:1201.4790 [gr-qc]

35. Podolský, J., Svarc, R.: Physical interpretation of Kundt spacetimes using geodesic deviation. Class.
Quant. Grav. 30, 205016 (2013). https://doi.org/10.1088/0264-9381/30/20/205016. arXiv:1306.6554
[gr-qc]

36. Künzle, H.-P., Hall, G.: Symmetries andCurvature Structure inGeneral Relativity. Gen. Relativ. Gravit.
37, 2275–2276 (2005). https://doi.org/10.1007/s10714-005-0186-9

37. Wald, R.: General Relativity. Chicago University Press, Chicago (1984). https://doi.org/10.7208/
chicago/9780226870373.001.0001

38. Penrose, R.: Zero rest mass fields including gravitation: asymptotic behavior. Proc. R. Soc. Lond. A
284, 159 (1965). https://doi.org/10.1098/rspa.1965.0058

39. Geroch, R.: Asymptotic structure of space-time. In: Paul Esposito, F., Witten, L. (eds.) Asymptotic
Structure of Space-Time, pp. 1–105. Springer, Boston (1977). https://doi.org/10.1007/978-1-4684-
2343-3_1

40. Penrose, R.: Asymptotic properties of fields and space-times. Phys. Rev. Lett. 10(2), 66 (1963)
41. Penrose, R., Rindler, W.: Spinors and Space-Time: Spinor and Twistor Methods in Space-Time Geom-

etry, vol. 2. Cambridge University Press, Cambridge (1984)
42. Berenstein, D., Nastase, H.: On lightcone string field theory from super Yang–Mills and holography.

arXiv preprint arXiv:hep-th/0205048 [hep-th] (2002)
43. Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. In: The

Global Nonlinear Stability of the Minkowski Space (PMS-41). Princeton University Press (2014)
44. Pirani, F.A.E.: Invariant formulation of gravitational radiation theory. Phys. Rev. 105, 1089–1099

(1957). https://doi.org/10.1103/PhysRev.105.1089
45. Aichelburg, P.C., Sexl, R.U.: On the gravitational field of a massless particle. Gen. Relativ. Gravit.

2(4), 303–312 (1971). https://doi.org/10.1007/BF00758149
46. Podolský, J., Veselý, K.: Continuous coordinates for all impulsive pp-waves. Phys. Lett. A 241(3),

145–147 (1998). https://doi.org/10.1016/S0375-9601(98)00162-5
47. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, Cambridge

(1983)
48. Brinkmann, H.W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94,

119–145 (1925). https://doi.org/10.1007/BF01208647

123

http://www.blau.itp.unibe.ch/lecturesPP.pdf
https://doi.org/10.1016/s0550-3213(03)00055-5
https://doi.org/10.1007/s00208-015-1270-4
https://doi.org/10.1016/j.geomphys.2016.06.013
https://doi.org/10.1016/j.geomphys.2016.06.013
https://doi.org/10.1007/BF00763448
https://doi.org/10.1007/BF00763448
https://doi.org/10.1017/CBO9780511616532
http://arxiv.org/abs/gr-qc/0004016
https://doi.org/10.1063/1.532981
http://arxiv.org/abs/gr-qc/9907048
https://doi.org/10.1098/rspa.1959.0124
http://arxiv.org/abs/1912.00591
https://doi.org/10.1017/CBO9780511777059
https://doi.org/10.1017/CBO9780511777059
https://doi.org/10.1063/1.1704788
https://doi.org/10.1063/1.1704788
https://doi.org/10.1103/PhysRevD.85.044057
http://arxiv.org/abs/1201.4790
https://doi.org/10.1088/0264-9381/30/20/205016
http://arxiv.org/abs/1306.6554
https://doi.org/10.1007/s10714-005-0186-9
https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.1098/rspa.1965.0058
https://doi.org/10.1007/978-1-4684-2343-3_1
https://doi.org/10.1007/978-1-4684-2343-3_1
http://arxiv.org/abs/hep-th/0205048
https://doi.org/10.1103/PhysRev.105.1089
https://doi.org/10.1007/BF00758149
https://doi.org/10.1016/S0375-9601(98)00162-5
https://doi.org/10.1007/BF01208647


   40 Page 58 of 59 C. Roche et al.

49. Coley, A., et al.: Generalizations of pp-wave spacetimes in higher dimensions. Phys. Rev. D 67 (2003).
https://doi.org/10.1103/PhysRevD.67.104020

50. Podolský, J., Zofka, M.: General Kundt spacetimes in higher dimensions. Class. Quantum Gravity
26(10), 105008 (2009). https://doi.org/10.1088/0264-9381/26/10/105008

51. Ortaggio,M., Pravda,V., Pravdová,A.:Algebraic classification of higher dimensional spacetimes based
on null alignment. Class. Quantum Gravity 30(1), 013001 (2012). https://doi.org/10.1088/0264-9381/
30/1/013001

52. Walker, A.G.: Canonical form for a Riemannian space with a parallel field of null planes. Q. J. Math.
1(1), 69–79 (1950). https://doi.org/10.1093/qmath/1.1.69

53. Podolský, J., Steinbauer, R., Svarc, R.: Gyratonic pp-waves and their impulsive limit. Phys. Rev. D
90(4), 25 (2014). https://doi.org/10.1103/physrevd.90.044050

54. Flores, J.L., Sánchez, M.: On the Geometry of pp-Wave Type Spacetimes. Analytical and Numerical
Approaches to Mathematical Relativity, pp. 79–98. Springer, Berlin (2006). https://doi.org/10.1007/
3-540-33484-X_4

55. Brdicka, M.: On gravitational waves. Proc. R. Ir. Acad. A Math. Phys. Sci. 54, 137–142 (1951)
56. Frolov, V.P., Israel, W., Zelnikov, A.: Gravitational field of relativistic gyratons. Phys. Rev. D 72,

084031 (2005). https://doi.org/10.1103/PhysRevD.72.084031
57. Bonnor, W.B.: Spinning null fluid in general relativity. Int. J. Theor. Phys. 3, 257–266 (1970). https://

doi.org/10.1007/BF00669753
58. Candela, A.M., Romero, A., Sánchez, M.: Remarks on the completeness of trajectories of accelerated

particles in Riemannian manifolds and plane waves (2013). arXiv:1304.4818 [math.DG]
59. Candela, A.M., Flores, J.L., Sánchez, M.: On general plane fronted waves. Geodesics Gen. Relat.

Gravit. 35(4), 631–649 (2003). https://doi.org/10.1023/a:1022962017685
60. Rosen, N.: Plane polarized waves in the general theory of relativity. Phys. Z. Sowjetunion 12 (1937)
61. Blau, M., Figueroa-O’Farrill, J., Papadopoulos, G.: Penrose limits, supergravity and brane dynamics.

Class Quantum Gravity 19(18), 4753–4805 (2002). https://doi.org/10.1088/0264-9381/19/18/310
62. Pravda, V., et al.: All spacetimes with vanishing curvature invariants. Class. Quantum Gravity 19(23),

6213–6236 (2002). https://doi.org/10.1088/0264-9381/19/23/318
63. Schmidt, H.-J.: Why do all the curvature invariants of a gravitational wave vanish? General Relativity

and Quantum Cosmology (1994). https://doi.org/10.1023/A:1022962017685
64. Caja, M.S., Blanco, O.F., Senovilla, J.M.M.: Structure of second-order symmetric Lorentzian mani-

folds. J. Eur. Math. Soc. 15(2), 595–634 (2013)
65. Penrose, R.: Any space-time has a plane wave as a limit. In: Cahen, M., Flato, M. (eds.) Differential

Geometry and Relativity: A Volume in Honour of André Lichnerowicz on His 60th Birthday, pp.
271–275. Springer, Dordrecht (1976). https://doi.org/10.1007/978-94-010-1508-0_23

66. Blau, M., et al.: Penrose limits and maximal supersymmetry. Class. Quantum Gravity 19(10), L87
(2002)

67. Berenstein, D., Maldacena, J., Nastase, H.: Strings in flat space and pp waves from N = 4 Super Yang
Mills. J. High Energy Phys. 2002(04), 013 (2002)

68. Blau, M., et al.: Penrose limits and spacetime singularities. Class. Quantum Gravity 21(7), L43 (2004)
69. Philip, S.: Penrose limits of homogeneous spaces. J. Geom. Phys. 56(9), 15161533 (2006). https://doi.

org/10.1016/j.geomphys.2005.08.002
70. Lee, J.M.: Introduction to Riemannian Manifolds. Graduate Texts in Mathematics, 2nd edn. Springer,

New York (2018)
71. Penrose, R.: A remarkable property of plane waves in general relativity. Rev. Mod. Phys. 37, 215–220

(1965). https://doi.org/10.1103/RevModPhys.37.215
72. Ehrlich, P.E., Emch, G.G.: Gravitational waves and causality. Rev. Math. Phys. [Erratum: Rev. Math.

Phys. 4, 501 (1992)], 4, 163–221 (1992). https://doi.org/10.1142/S0129055X92000066
73. Flores, J.L., Sánchez, M.: Causality and conjugate points in general plane waves. Class. Quantum

Gravity 20, 25 (2002). https://doi.org/10.1088/0264-9381/20/11/322
74. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. Recent developments in pseudo-

Riemannian geometry 4, 299–358 (2008)
75. Flores, J.L.: Ehlers-Kundt conjecture about Gravitational Waves and Dynamical Systems. IX Inter-

national Meeting on Lorentzian Geometry, Warsaw, 2018 (2021). https://www.impan.pl/konferencje/
bcc/2018/18-lorentzian9/talks_contributed/flores_talk.pdf

76. Hawking, S.: The existence of cosmic time functions. Proc. R. Soc. Lond. A 308, 433–435 (1969)

123

https://doi.org/10.1103/PhysRevD.67.104020
https://doi.org/10.1088/0264-9381/26/10/105008
https://doi.org/10.1088/0264-9381/30/1/013001
https://doi.org/10.1088/0264-9381/30/1/013001
https://doi.org/10.1093/qmath/1.1.69
https://doi.org/10.1103/physrevd.90.044050
https://doi.org/10.1007/3-540-33484-X_4
https://doi.org/10.1007/3-540-33484-X_4
https://doi.org/10.1103/PhysRevD.72.084031
https://doi.org/10.1007/BF00669753
https://doi.org/10.1007/BF00669753
http://arxiv.org/abs/1304.4818
https://doi.org/10.1023/a:1022962017685
https://doi.org/10.1088/0264-9381/19/18/310
https://doi.org/10.1088/0264-9381/19/23/318
https://doi.org/10.1023/A:1022962017685
https://doi.org/10.1007/978-94-010-1508-0_23
https://doi.org/10.1016/j.geomphys.2005.08.002
https://doi.org/10.1016/j.geomphys.2005.08.002
https://doi.org/10.1103/RevModPhys.37.215
https://doi.org/10.1142/S0129055X92000066
https://doi.org/10.1088/0264-9381/20/11/322
https://www.impan.pl/konferencje/bcc/2018/18-lorentzian9/talks_contributed/flores_talk.pdf
https://www.impan.pl/konferencje/bcc/2018/18-lorentzian9/talks_contributed/flores_talk.pdf


Exact parallel waves in general relativity Page 59 of 59    40 

77. Flores, J.L., Sánchez, M.: The Ehlers-Kundt conjecture about gravitational waves and dynamical
systems. J. Differ. Equ. 268(12), 7505–7534 (2020). https://doi.org/10.1016/j.jde.2019.11.061

78. Forstneric, F.: Actions of (R, +) and (C, +) on complex manifolds. Math. Z. 223(1), 123–154 (1996)
79. Podolsky, J., Vesely, K.: Chaotic motion in p p wave space-times. Class. Quant. Grav. 15, 3505–3521

(1998). https://doi.org/10.1088/0264-9381/15/11/015. arXiv:gr-qc/9809065 [gr-qc]
80. Costa e Silva, I.P., Flores, J.L., Herrera, J.: Rigidity of geodesic completeness in the Brinkmann class

of gravitational wave spacetimes. Adv. Theor. Math. Phys. 22(1), 25–45 (2018)
81. Podolsky, J., Vesely, K.: Chaos in p p wave space-times. Phys. Rev. D 58, 081501 (1998). https://doi.

org/10.1103/PhysRevD.58.081501. arXiv:gr-qc/9805078 [gr-qc]
82. Vesely, K., Podolsky, J.: Chaos in a modified Henon-Heiles system describing geodesics in gravita-

tional waves. Phys. Lett. A 271, 368–376 (2000). https://doi.org/10.1016/S0375-9601(00)00391-1.
arXiv:gr-qc/0006066 [gr-qc]

83. Podolsky, J., Vesely, K.: Smearing of chaos in sandwich p p waves. Class. Quant. Grav. 16, 3599–3618
(1999). https://doi.org/10.1088/0264-9381/16/11/310. arXiv:gr-qc/9909012 [gr-qc]

84. Hopf, H., Rinow,W.: Ueber den Begriff der vollständigen differentialgeometrischen Fläche. Comment.
Math. Helv. 3, 209–225 (1931). https://doi.org/10.1007/BF01601813

85. Leistner, T.: Geodesic completeness of compact Lorentzian manifolds. International Meeting on
Lorentzian Geometry, Cordoba, Spain (2021). https://youtu.be/CU5wL2SmkPo

86. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics.
Springer, New York (2001)

87. Axler, S., Bourdon, P., Wade, R.: Harmonic Function Theory, vol. 137. Springer, New York (2013)
88. Karigiannis, S.: Course Notes—Riemannian Geometry. http://www.jlazovskis.com/docs-mgrad/

pm665.pdf
89. Lee, J.: (https://math.stackexchange.com/users/1421/jack-lee). Covariant derivative versus exterior

derivative. Mathematics Stack Exchange (version: 2016-10-22). https://math.stackexchange.com/q/
1980443

90. Spivak, M.: Calculus on Manifolds. Benjamin Cummings, New York (1965)
91. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1. Wiley, New York (1963)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/j.jde.2019.11.061
https://doi.org/10.1088/0264-9381/15/11/015
http://arxiv.org/abs/gr-qc/9809065
https://doi.org/10.1103/PhysRevD.58.081501
https://doi.org/10.1103/PhysRevD.58.081501
http://arxiv.org/abs/gr-qc/9805078
https://doi.org/10.1016/S0375-9601(00)00391-1
http://arxiv.org/abs/gr-qc/0006066
https://doi.org/10.1088/0264-9381/16/11/310
http://arxiv.org/abs/gr-qc/9909012
https://doi.org/10.1007/BF01601813
https://youtu.be/CU5wL2SmkPo
http://www.jlazovskis.com/docs-mgrad/pm665.pdf
http://www.jlazovskis.com/docs-mgrad/pm665.pdf
https://math.stackexchange.com/users/1421/jack-lee
https://math.stackexchange.com/q/1980443
https://math.stackexchange.com/q/1980443

	Exact parallel waves in general relativity
	Exact parallel waves in general relativity
	Abstract
	1 Introduction
	1.1 Survey of early developments
	1.2 Nomenclature

	2 Defining waves in general relativity
	2.1 Linearised gravity
	2.2 Wavelike exact solutions
	2.2.1 Comparison with the linearised theory

	2.3 Spacetimes containing gravitational radiation
	2.3.1 Algebraic classification of the Weyl tensor
	2.3.2 Groups of motions (symmetry)


	3 The coordinate description
	3.1 General parallel waves and pp-waves
	3.2 Standard pp-wave
	3.3 Classical pp-waves
	3.3.1 Plane waves

	3.4 Gyratonic pp-waves
	3.5 (N,h)p-waves
	3.6 Rosen coordinates of plane waves

	4 Properties
	4.1 Vanishing scalar invariants
	4.2 pp-waves via their wavefronts
	4.3 Penrose limits
	4.3.1 Limiting procedure: Penrose's construction

	4.4 Causality in parallel waves
	4.4.1 A remarkable property of plane waves
	4.4.2 Generic position on the causal ladder
	4.4.3 Conditions for stronger causal character


	5 The Ehlers–Kundt conjecture
	5.1 Relation to complex dynamics
	5.2 Polynomial EK-conjecture
	5.2.1 Motivation for proof
	5.2.2 Outline of proof

	5.3 The compact case
	5.4 Case of failure

	Acknowledgements
	A Proof of Theorem 3.1
	B Exterior derivative of k-forms
	References


