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Prescribing the Q
′
-Curvature on Pseudo-Einstein

CR 3-Manifolds

Ali Maalaoui(1)

December 20, 2022

Abstract In this paper we study the problem of prescribing the Q
′
-curvature on

embeddable pseudo-Einstein CR 3-manifolds. In the first stage we study the problem

in the compact setting and we show that under natural assumptions, one can prescribe

any positive (resp. negative) CR pluriharmonic function, if
∫
M

Q′ dvθ > 0 (resp.∫
M

Q′ dvθ < 0). In the second stage, we study the problem in the non-compact

setting of the Heisenberg group. Under mild assumptions on the prescribed function,

we prove existence of a one parameter family of solutions. In fact, we show that one

can find two kinds of solutions: normal ones that satisfy an isoperimetric inequality

and non-normal ones that have a biharmonic leading term.

Keywords: Pseudo-Einstein manifolds, Q′-curvature, Statistical mechanics

2010 MSC. Primary: 32V20, 32V05. Secondary: 82B05

1 Introduction and Main Results

The Q′-curvature and the P ′-operator play an important role in the study of the
geometry of three-dimensional CR manifolds. In fact, the pair (Q′, P ′) is a close
analogue of the pair (Q,P4) for 4-dimensional conformal manifolds. Indeed, the
total Q′-curvature is a biholomorphic invariant while the total Q-curvature in
dimension four is tightly linked to the Gauss-Bonnet-Chern formula.

We recall that the Q-curvature was first introduced by Branson [3] in connec-
tion with the conformal anomaly of the functional determinant of conformally
invariant operators. The total Q-curvature presents an important link between
the topology of a manifold and its geometric structure. Indeed, we have∫

M

Q dvg +
1

8

∫
M

|Wg|2 dvg = 4π2χ(M).
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We refer the reader to [17] for some applications of this property. Under con-
formal change of the metric g → ĝ = e2ug, the Q-curvature satisfies

e4uQĝ = Qg + P4u,

where P4 is a fourth order conformally invariant operator with leading term ∆2
g.

We also point out that the pair (Q,P4) naturally appears in the Beckner-Onofri
inequality [1]: for all u ∈ H2(S4),∫

S4

uP4u+ 4Qu dvgS4 −
(∫

Sn

Q dvgS4

)
ln
(∫

S4 e
4u dvgS4

V ol(S4)

)
≥ 0.

Motivated by these powerful properties for (Q,P4) and the correspondence
between conformal and CR geometry induced by the Fefferman metric [15], one
can construct a pair (Q,Pθ) such that under a conformal change of the contact

form θ → θ̂ = e2uθ, one has

Pθu+Qθ = Qθ̂e
4u,

where the Paneitz operator is Pθ = (∆b)
2 + T 2 + l.o.t. The study of this opera-

tor led to some strong results related to the embeddability of three-dimensional
CR manifolds (see for example [12, 30]). Unfortunately, despite the naturality
of this construction, the pair (Q,Pθ) has two main issues. The first one is the
size of the kernel of the operator P4. Indeed, P4 has a huge kernel containing
the space of CR pluriharmonic functions P. Moreover, its fundamental solution
has a leading term of (ln |xy−1|)2 (with M seen as locally diffeomorphic to the
Heisenberg group H1 with its standard group structure defined below). The
second issue is that the total Q-curvature is always zero [21]. In fact, if the CR
structure is embeddable, then there exists a contact form with pointwise van-
ishing CR Q-curvature as shown in [30]. Therefore, compared to its conformal
counterpart, the CRQ-curvature does not provide strong geometric information.

In [4], the authors provide an alternative operator for odd dimensional
spheres that we will denote here by P ′. This operator was introduced in order to
prove a sharp Beckner-Onofri inequality in the CR setting. In fact, this operator
was denoted by A′

Q in [4] and referred to as ”conditional intertwinor” because
the operator intertwines with the conformal automorphisms modulo functions
orthogonal to P. In dimension 3, the P ′-operator satisfies P ′ = 4(∆b)

2 + lot
and is defined on the space of pluriharmonic functions and the Q′-curvature is
defined implicitly so that

e2uQ′
θ̂
= Q′

θ + P ′
θu+

1

2
Pθ(u

2).

This can be also stated as

P ′
θu+Q′

θ = Q′
θ̂
e2u mod P⊥. (1)
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This construction was then extended in [9] to the case of pseudo-Einstein
three-dimensional CR manifolds. The total Q′-curvature is invariant under the
conformal change of the contact form (within the class of pseudo-Einstein con-
tact forms, or when the CR manifold is assumed to be embeddable and it is
only evaluated at Q-flat contact forms, see [30]). In contrast to the CR Q-
curvature, the total Q′-curvature is not always zero. In fact, it is proportional
to the Burns-Epstein invariant µ(M) (see [5] when T 1,0M is trivial, which was
then extended in [13]). In particular, as shown in [9], if (M,J) is the boundary
of a strictly pseudo-convex domain X, then∫

M

Q′ θ ∧ dθ = 16π2
(
χ(X)−

∫
X

(c2 −
1

3
c21)
)
,

where c1 and c2 are the first and second Chern forms of the Kähler-Einstein
metric on X obtained by solving Fefferman’s equation.

Because of the issue of solving orthogonally to the infinite-dimensional space
P⊥, Case, Hsiao and Yang [8], studied another quantity that has similar prop-
erties to the Q′-curvature and that comes from the projection of equation (1)
on to the space P. In fact, the P ′-operator as defined in [4], is only defined after
projection on P, but in [8], the authors show extra analytical properties of this
projected operator. Indeed, if we let Γ : L2 → P be the orthogonal projection

and we let P
′
= Γ ◦ P ′, then in [8], the authors study the equation

P
′
u+Q

′
= λe2u mod P⊥.

The quantity Q
′
is the projection of Q′ on P, that is, Q

′
= Γ ◦Q′.

In this paper we continue the study of the problem of prescribing the Q
′
-

curvature, under conformal change of the contact structure on pseudo-Einstein
CR manifolds. Namely, given a function Q ∈ P, we want to solve the problem

P
′
u+Q

′
= Qe2u mod P⊥. (2)

Naturally, this is equivalent to

P
′
u+Q

′
= Γ(Qe2u).

Notice that if u solves (2), then for θ̃ = euθ, one has Q
′
θ̃ = Q. Indeed, we first

observe that the space P is a CR invariant and does not depend on the contact
form, since it can be defined as the set of functions that are locally the real part
of ∂b-closed complex valued functions. Hence, Pθ = Pθ̃. Moreover, we have two
different L2-inner products. The first one is defined by

⟨f, g⟩θ =

∫
M

fg θ ∧ dθ,

while the second one is defined by

⟨f, g⟩θ̃ =

∫
M

fg θ̃ ∧ dθ̃ =
∫
M

fg e2uθ ∧ dθ.
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Thus, ψ ∈ P⊥
θ if and only if e−2uψ ∈ P⊥

θ̃
. Therefore, if Γu is the L2-projection

using ⟨·, ·⟩θ̃, then we have Γu(Q
′
θ̃
) = Q.

Since the method that we are adopting is of a probabilistic nature, we will
focus on the case of signed functions. That is, the prescribed function Q will
be either positive on M or negative on M . By the invariance of the total Q′-
curvature under conformal change, this means that we are focusing on the two

cases,
∫
M
Q

′
dv > 0 and

∫
M
Q

′
dv < 0, respectively. Our main result can be

formulated as follow:

Theorem 1.1. Let (M,T 1,0M, θ) be a three-dimensional embeddable compact

pseudo-Einstein manifold such that P
′
is positive and kerP

′
= R . Consider a

function Q ∈ C∞(M) such that{
Q > 0 if

∫
M
Q

′
dvθ > 0

Q < 0 if
∫
M
Q

′
dvθ < 0.

Assume that
∫
M
Q

′
dvθ < 16π2. Then there exists u ∈ P such that

P ′u+Q′ = Qe2u mod P⊥.

In particular, the contact form θ̂ = euθ satisfies Q
′
θ̂ = Γu ◦Q.

We recall that in [9], the authors show that the non-negativity of the Paneitz

operator Pθ and the positivity of the CR-Yamabe invariant imply that P
′
is

non-negative and kerP
′
= R. Moreover,

∫
M
Q′ dvθ =

∫
M
Q

′
dvθ ≤ 16π2 with

equality if and only if (M,T 1,0M, θ) is the standard sphere. In fact, the previ-
ously stated assumptions have very strong geometric implications, namely, they
imply that the (M,T 1,0M, θ) is embeddable as proved in [12]. We also point
out some similarities between our result and the work in [20].

Our strategy follows an idea from statistical mechanics introduced by Messer
and Spohn [29], then extended to logarithmic potentials by Kiessling in [24].
This method was used in the problem of prescribing the scalar curvature in [11]
and then the problem of prescribing the Q-curvature with conical singularities
in [28]. This will be introduced in Section 2.2. In fact, Theorem 1.1 will be a
direct corollary of the more general result stated in Theorem 2.5.

In section 4, we consider the case of the Heisenberg group. Since the space
is not compact, we will be assuming the following:

Given a function K ∈ kerP ′ ∩ kerP and a positive function Q ∈ C∞(H)
such that

a) For all 0 < q < 4, we have
∫
B1(x)

|Q(y)|e2K(y)

|xy−1|q dy → 0 as x→ ∞.

b) There exists s ≥ 0 such that
∫
H |Q(x)|e2K(x)|x|s dx <∞.
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Then we have the following result:

Theorem 1.2. Given a function Q ∈ C∞(H) that satisfies a) and b), there
exist a constant β∗ < 0 and a one parameter family uβ, of solutions to

4(∆b)
2u = Q(x)e2u mod P⊥,

where β ∈ (β∗, 0) if Q < 0 and β ∈ (0, 8) if Q > 0. Moreover u(x) = 1
2K(x)−

βγ
2 ln |x|+ o(ln |x|).

We recall that the contact form euθ0 is said to be normal, (see [32]), if

u(x) = γ

∫
H
ln

|y|
|xy−1|

Q(y)e2u(y) dy + C,

where C is a constant. In particular, if K is not constant in the above theorem,
then euθ0 is not normal. Hence, Theorem 1.2 provides us with a families of
non-normal contact forms. On the other hand, the results in [32] imply

Corollary 1.3. . Under the same assumptions as in Theorem 1.1, taking K to
be constant, the one parameter family uβ gives rise to contact forms θβ = euβθ0,
satisfying the isoperimetric inequality, where θ0 is the standard contact form on
H. That is, for any bounded domain Ω with smooth boundary

V olθβ (Ω) ≤ CβAreaθβ (∂Ω)
4
3 ,

where Cβ depends on Q and β.

As we will see in Section 4, for K constant, the family of solutions uβ is

normal and has total Q
′
-curvature equal to β

2γ . Since β < 8, we have that∫
HQe

2u < 16π2, hence, the procedure in [32] can be applied to show that e2u

is an A1 weight. We recall here that a non-negative function w defined on H is
said to be an A1 weight, if there exists a constant C0 > 0 such that for any ball
B ⊂ H,

1

|B|

∫
B

w(x) dx ≤ C0 inf
x∈B

(w(x)).

Acknowledgement The author wants to express his gratitude to Prof. Paul
Yang for the fruitful conversations and insight that helped improve this paper.
Also, the author wants to extend his thanks and gratitude to the referees for
their comments and suggestions that led to this improved version of the paper.

2 Preliminaries and Setting

2.1 Pseudo-Hermitian geometry

We will closely follow the notations in [9]. Let M3 be a smooth, oriented three-
dimensional manifold. A CR structure on M is a one-dimensional complex
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subbundle T 1,0M ⊂ TCM := TM ⊗ C such that T 1,0M ∩ T 0,1M = {0} for

T 0,1M := T 1,0M . Let H = Re
(
T 1,0M ⊕ T 0,1M

)
and let J : H → H be the

almost complex structure defined by J(Z + Z̄) = i(Z − Z̄), for all Z ∈ T 1,0M .
Notice that since TM and H are both orientable, the line bundle E = TM/H
is also orientable and hence trivial. Thus, there exists a globally defined 1-form
θ such that H = ker θ. This form 1-form θ always exists, and is determined
up to multiplication by a positive real-valued smooth function. We say that
(M3, T 1,0M) is strictly pseudo-convex if the Levi form dθ(·, J ·) on H ⊗ H is
positive definite for some, and hence any, choice of contact form θ. This is
equivalent to the fact that θ is a contact form. We recall that a 1-form θ is said
to be a contact form if θ ∧ dθ is a volume form on M3. We shall always assume
that our CR manifolds are embeddable and strictly pseudo-convex.

Notice that in a CR-manifold, there is no canonical choice of the contact
form θ. A pseudohermitian manifold is a triple (M3, T 1,0M, θ) consisting of a
CR manifold and a contact form. The Reeb vector field T is the vector field
such that θ(T ) = 1 and dθ(T, ·) = 0. The choice of θ induces a natural L2-dot
product ⟨·, ·⟩, defined by

⟨f, g⟩ =
∫
M

f(x)g(x) θ ∧ dθ.

From now on, we will let dvθ := θ ∧ dθ. We will also use the notation dvθ(x) to
specify the variable of integration when necessary.

A (1, 0)-form is a section of T ∗
CM which annihilates T 0,1M . An admissible

coframe is a non-vanishing (1, 0)-form θ1 in an open set U ⊂ M such that
θ1(T ) = 0. Let θ1̄ := θ1 be its conjugate. Then dθ = ih11̄θ

1 ∧ θ1̄ for some
positive function h11̄. The function h11̄ is equivalent to the Levi form and
without loss of generality, we will normalize our frame so that h11̄ = 1. We set
{Z1, Z1̄, T} to the dual of {θ1, θ1̄, θ}. The geometric structure of a CR manifold
is determined by the connection form ω1

1 and the torsion form τ1 = A11θ
1

defined in an admissible coframe θ1 and is uniquely determined by{
dθ1 = θ1 ∧ ω1

1 + θ ∧ τ1,
ω11̄ + ω1̄1 = dh11̄,

where we use h11̄ to raise and lower indices. That is τ1 = h11̄τ1̄ = A1
1̄θ

1̄. The
connection forms determine the pseudohermitian connection ∇, also called the
Tanaka-Webster connection, by

∇Z1 := ω1
1 ⊗ Z1.

The scalar curvature R of θ, also called the Webster curvature, is given by the
expression

dω1
1 = Rθ1 ∧ θ1̄ mod θ.

Definition 2.1. A real-valued function w ∈ C∞(M) is CR pluriharmonic if
locally w = Re(f) for some complex-valued function f ∈ C∞(M,C) satisfying
Z1̄f = 0.
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Equivalently, [27], w is a CR pluriharmonic function if

P3w := ∇1∇1∇1w + iA11∇1w = 0,

for ∇1 := ∇Z1
. We denote by P the space of all CR pluriharmonic functions.

Let Γ : L2(M) → L2(M) ∩ P be the orthogonal projection on the space of
pluriharmonic functions. If S : L2(M) → ker ∂̄b denotes the Szegő kernel, then

Γ = S + S̄ + F,

where F is a smoothing kernel as shown in [23]. The Paneitz operator Pθ is the
differential operator

Pθ(w) := 4div(P3w)

= ∆2
bw + T 2 − 4Im∇1

(
A11∇1f

)
,

for ∆b := ∇1∇1 + ∇1̄∇1̄ the sublaplacian. In particular, P ⊂ kerPθ. Hence,
kerPθ is infinite-dimensional. For a thorough study of the analytical properties
of Pθ and its kernel, we refer the reader to [23, 6, 8]. The CR covariance is the
main property of the Paneitz operator Pθ needed in this article [21]. That is, if

θ̂ = ewθ, then e2wPθ̂ = Pθ. Other properties — e.g. that it has closed range on
embeddable manifolds — are equally important for most problems of the type
considered here.

Definition 2.2. Let (M3, T 1,0M, θ) be a pseudohermitian manifold. The Paneitz
type operator P ′

θ : P → C∞(M) is defined by

P ′
θf = 4∆2

bf − 8Im
(
∇1(A11∇1f)

)
− 4Re

(
∇1(R∇1f)

)
+

8

3
Re(∇1R− i∇1A11)∇1f − 4

3
f∇1(∇1R− i∇1A11), (3)

for f ∈ P.

The main property of the operator P ′
θ is its Q-like conformal transformation

law as shown in [9]. That is if (M3, T 1,0M, θ) is a pseudohermitian manifold,

w ∈ C∞(M), and we set θ̂ = ewθ, then

e2wP̂ ′
θ(u) = P ′

θ(u) + Pθ (uw) , (4)

for all u ∈ P. In particular, since Pθ is self-adjoint and P ⊂ kerPθ, we have
that the operator P ′ is conformally covariant mod P⊥.

Definition 2.3. A pseudohermitian manifold (M3, T 1,0M, θ) is pseudo-Einstein
if ∇1R− i∇1A11 = 0.

Moreover, if θ is a pseudo-Einstein structure then euθ is pseudo-Einstein if
and only if u ∈ P. The definition above was stated in [9], but it was implicitly
mentioned in [21]. In particular, if (M3, T 1,0M, θ) is pseudo-Einstein, then P ′

θ

takes a simpler form:

P ′
θf = 4∆2

bf − 8Im
(
∇1(A11∇1f)

)
− 4Re

(
∇1(R∇1f)

)
.

7



Definition 2.4. Let (M3, T 1,0M, θ) be a pseudo-Einstein manifold. The Q′-
curvature is the scalar quantity defined by

Q′
θ = 2∆bR− 4|A|2 +R2, (5)

where |A|2 = A11A
1̄1̄.

The main equation that we will be dealing with is the change of the Q′-
curvature under conformal change. Let (M3, T 1,0M, θ) be a pseudo-Einstein

manifold, let w ∈ P, and set θ̂ = ewθ. Hence θ̂ is pseudo-Einstein. Then [9]

e2wQ′
θ̂
= Q′

θ + P ′
θ(w) +

1

2
Pθ

(
w2
)
. (6)

In particular, Q′
θ behaves as the Q-curvature for P ′

θ, mod P⊥. To summarize
the similarities between the 3-dimensional pseudo-Einstein manifolds and 4-
dimensional Riemannian manifolds, we present the following table:

Conformal 4- manifold Pseudo-Einstein 3-manifold

(M4, g) (M3, θ, J)

e2ug euθ ; u CR pluriharmonic

Pg = ∆2
g + div( 23R− 2Ric)du P ′

θ = 4∆2
b − 8Im(A11u1̄)1̄ − 4Re(Ru1)1̄

Q = − 1
12 (∆R−R2 + 3|Ric|2) Q′ = 2∆bR− 4|A|2 +R2

∫
M
Qg +

1
8 |Wg|2dvg = 4π2χ(M)

∫
M
Q′dvθ = −µ(M)

16π2

Since we are working modulo P⊥ it is convenient to project the previously
defined quantities on P. So we define the operator P̄ ′

θ = Γ ◦ P ′
θ and the Q̄′-

curvature by Q̄′
θ = Γ(Q′

θ). Notice that∫
M

Q′ θ ∧ dθ =
∫
M

Q
′
θ θ ∧ dθ.

Moreover, the operator P
′
θ has many interesting analytical properties. Indeed,

P
′
θ : P → P is an elliptic pseudo-differential operator (see [8]) and if we assume

that kerP
′
θ = R, then its Green’s function G satisfies

P
′
θG(·, y) = Γ(·, y)− 1

V
,

where V =
∫
M
θ ∧ dθ is the volume of M . Moreover,

G(x, y) = − 1

4π2
ln(|xy−1|) +K(x, y),

8



where K is a bounded kernel as shown in [7]. We recall here the group operation
and the Korányi norm in the Heisenberg group H = R× C: If a = (t1, z1) and
b = (t2, z2) ∈ H, then

a · b = (t1 + t2 + 2Im(z1z2), z1 + z2).

The Korányi norm is defined by

|a| = (t21 + |z1|4)
1
4 .

We want also to clarify the relation between P
′
θ and P

′
θ̂ for θ̂ = euθ. Indeed,

if we let Γu denote the L2-orthogonal projection on P induced by ⟨·, ·⟩θ̂ then

P
′
θ̂ = Γu ◦ (e−2uP

′
θ).

From now on we will always assume that kerP
′
= R and that P

′
is non-

negative. We will be using a particular solution, U , to the problem:

P
′
U(·, y) = Γ(·, y)− Q

′∫
M
Q

′
dvθ

.

One can, then, write U(x, y) = G(x, y) +H(x) +H(y) where G is the Green’s

function of P
′
and H ∈ P is the solution of the problem

P
′
H =

1

V
− Q

′∫
M
Q

′
dvθ

.

It is easy to check that, locally,

U(x, y) = −γ ln |xy−1|+ H̃(x, y),

where γ = 1
4π2 .

The proof of Theorem 1.1 will be a direct consequence of the following

Theorem 2.5. We fix a smooth function Q such that Q(x) > 0 on M . For
every β < 8

γ , there exist ρβ ∈ Lp(M) for all 1 ≤ p < ∞, solving the following
fixed point problem:

ρβ(x) =
Q(x) exp

(
β
∫
M
U(x, y)ρβ(y) dvθ(y)

)∫
M
Q(x) exp

(
β
∫
M
U(x, y)ρβ(y) dvθ(y)

)
dvθ(x)

.

The idea of the proof of the previous result follows a procedure introduced
by Messer and Spohn [29] for the a smooth interaction potential. This method
was then developed by Kiessling [24, 25, 26]. The method mainly consists of
studying the typical distribution of a family of particles inside a set that interact
through a given Hamiltonian. In our case it will be U . In order to develop this
method, we need some probabilistic background. For the sake of notation, we
will write dvθ(x) = dx and dvθ(y) = dy.

9



2.2 Overview of the Probabilistic Method

We first define the Hamiltonian, or the potential, of N particles in the manifold
M . That is, given N ∈ N and x1, · · · , xN ∈M , the Hamiltonian U (N) is defined
by

U (N)(x1, · · · , xN ) =
1

2(N − 1)

∑
1≤i ̸=j≤N

U(xi, xj) =
1

N − 1

∑
1≤i<j≤N

U(xi, xj).

We now introduce some probabilistic tools. For each N ∈ N, denote the prob-

ability measures on M (N) =

N︷ ︸︸ ︷
M ×M × · · · ×M by P (M (N)). For a probability

measure ϱ(N) ∈ P (M (N)), denote the associated Radon measure by ϱ̂(N) and
by this we mean, its action on functions, that is

ϱ̂(N)(f) =

∫
M(N)

f(y)ϱ(dy).

A measure µ(N) ∈ P (MN ) is called absolutely continuous with respect to a
measure ϱ(N) ∈ P (M (N)), written dµ(N) << dϱ(N), if there exists a positive
dϱ(N)-integrable function f(x1, ..., xN ), called the density of µ(N) with respect
to ϱ(N), such that dµ(N) = f(x1, ..., xN )dϱ(N). By P s(M (N)) we mean the
space of exchangeable probabilities, i.e. the subset of P (M (N)) whose elements
are permutation symmetric in x1, ..., xN ∈ M . The nth marginal measure of
ϱ(N) ∈ P s(M (N)), n < N , is an element of P s(M (n)), given by integrating ϱ(N)

with respect to N−n variables. More precisely, given a measurable set A ⊂Mn,

the nth marginal ϱ
(N)
n is given by

ϱ(N)
n (A) = ϱ(N)(A×M (N−n)).

We let Ω = M (N) be the set of sequences with values in M . To ϱ ∈ P (M) we
assign the energy functional defined by

E(ϱ) ≡ 1

2
ϱ̂⊗2(U(x, y)) =

1

2

∫
M

∫
M

U(x, y)ϱ(dx)ϱ(dy), (7)

whenever the integral on the right exists. We denote by PE(M) the subset of
P (M) for which E(ϱ) exists. For µ ∈ P s(Ω) the mean energy of µ is defined by

e(µ) = lim
n→∞

1

n
µ̂n(U

(n)) =
1

2
µ̂2(U(x, y)), (8)

whenever the integral on the right exists. Using the decomposition measure
introduced by [19], one has the following proposition:

Proposition 2.6. The mean energy of µ, is well defined for those µ whose
decomposition measure ν(dϱ|µ) is concentrated on PE(M), and in that case it is
given by

e(µ) =

∫
PE(M)

ν(dϱ|µ)E(ϱ). (9)
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In our setting, we define the measure

τ(dx) = Q(x)dx, (10)

and we set M(1) =
∫
M
Q(y)dy. Thus one can define the probability measure

µ(1)(dx) = 1
M(1) τ(dx). Next, we define the micro-canonical ensemble, [14], by

µ(N) =
1

M(N)(β)
exp

β 1

N − 1

∑
1≤i<j≤N

U(xi, xj)

 ∏
1≤l≤N

τ(dxl), (11)

where M(N)(β) is a normalizing constant making µ(N) a probability measure.
That is

M(N)(β) =

∫
M(N)

exp

β 1

N − 1

∑
1≤i<j≤N

U(xi, xj)

 ∏
1≤l≤N

τ(dxl).

For each ϱ(N)(dx1...dxN ) ∈ P
(
M (N)

)
, its entropy with respect to the prob-

ability measure µ(1)(dx1)⊗ ...⊗ µ(1)(dxN ) ≡ µ(1)⊗N (dx1...dxN ) is defined by

S(N)
(
ϱ(N)

)
= −

∫
M(N)

ln

(
dϱ(N)

dµ(1)⊗N

)
ϱ(N)(dx1...dxN ), (12)

if ϱ(N) is absolutely continuous with respect to dτ⊗N , and provided the integral
exists. In all other cases, S(N)

(
ϱ(N)

)
= −∞. In particular, if µn is the nth

marginal of a measure µ ∈ P s(Ω), then the entropy of µn, n ∈ {1, ...}, is given
by S(n)(µn), where S(n) is defined as in (12) with ϱ(n) = µn. We also define
S(0)(µ0) = 0.

After having defined the entropy function, we now state some of its classical
properties. We refer the reader to [26] for the details of the proofs. For each
µ ∈ P s(Ω), the sequence n 7→ S(n)(µn) enjoys the following

Proposition 2.7. Non-positivity
For all n,

S(n)(µn) ≤ 0.

Monotonic decrease
If n < n1, then

S(n1)(µn1
) ≤ S(n)(µn).

Strong sub-additivity For n1, n2 ≤ n,

S(n)(µn) ≤ S(n1)(µn1)+S(n2)(µn2)+S(n−n1−n2)(µn−n1−n2)−S(n1+n2−n)(µn1+n2−n),

with the convention that S(−m)(µ−m) ≡ 0 for m > 0.
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As a consequence of the sub-additivity of S(n)(µn), the limit

S(µ) = lim
n→∞

1

n
S(n)(µn) ,

exists whenever infn n
−1S(n)(µn) > −∞; otherwise S(µ) = −∞. The quantity

S(µ) is called the mean entropy of µ ∈ P s(Ω). The mean entropy is an affine
function, moreover one has the following representation .

Proposition 2.8. The mean entropy of µ, is given by

S(µ) =
∫
P (M)

ν(dϱ|µ)S(1)(ϱ).

3 Proof of Theorem 1.1

3.1 First Properties of the Probability Measures

We begin investigating our problem by following the approach developed in [26].

First we have the following integrability property.

Proposition 3.1. For βγ ∈ (−∞, 8), the measure µ(N) satisfies dµ(N) <<
dτ⊗N , moreover, the associated density belongs to Lp(M (N), τ⊗N ) for p ∈ [1,∞]
if β ≤ 0 and p ∈ [1, 8

βγ ) if βγ ∈ (0, 8), for N big enough.

Proof. Indeed, using the convexity of the exponential function and the symme-
try of U , we have

M(N)(pβ) =

∫
M(N)

exp
(
pβU (N)(x1, · · · , xN )

)
dτ⊗N (x1, · · · , xN )

≤ 1

N

N∑
i=1

∫
M(N)

exp
(pβ

2

N

N − 1

N∑
j=1,j ̸=i

U(xi, xj)
)
dτ⊗N (x1, · · · , xN )

≲
1

N

N∑
i=1

∫
M

(∫
M

exp(
pβ

2

N

N − 1
U(x, y))τ(dy)

)N−1

τ(dx)

≲ 1 +

∫
M

(∫
Bx(1)

exp
(pβγ

2

N

N − 1
ln(

1

|xy−1|
)
)
τ(dy)

)N−1

τ(dx).

It is clear that the integrand is finite, whenever pβγ N
N−1 < 8.

We set the approximated variational problem by defining the functional F (N)
β

as follows
F (N)

β (ϱ(N)) := S(N)(ϱ(N)) + βϱ̂(N)
(
U (N)

)
.

This functional is well defined on probability measures in P (M (N))
⋂
∪p>1L

p(M (N), dµ(1)⊗N )
that are absolutely continuous with respect to τ⊗N . We will denote their space
by XN .

12



Lemma 3.2. For βγ ∈ (−∞, 8) the functional F (N)
β has a unique maximum

and it is achieved by the measure µ(N). That is

F (N)(β) := sup
ϱ(N)∈XN

F (N)
β (ϱ(N)) = F (N)

β (µ(N)). (13)

Moreover,

F (N)
β (µ(N)) = ln

(
M(N)(β)

(M(1))N

)
. (14)

Proof. First, notice that F (N)
β (µ(N)) is well defined for β ∈ (−∞, 8γ ) and an

explicit computation gives the equation (14).
Now,

F (N)
β

(
ϱ(N)

)
= β

∫
M(N)

U (N) dϱ(N)

dµ(1)⊗N
dµ(1)⊗N (dx1, ...dxN )

−
∫
M(N)

ln

(
dϱ(N)

dµ(1)⊗N

)
dϱ(N)

dµ(1)⊗N
dµ(1)⊗N (dx1, ...dxN ). (15)

But
dϱ(N)

dµ(1)⊗N
=

(M(1))N

M(N)(β)
eβU

(N) dϱ(N)

dµ(N)
.

Hence,

F (N)
β (ϱ(N)) = −

∫
M(N)

ln

(
dϱ(N)

dµ(N)

)
ϱ(N)(dx1, ..., dxN )− ln

(
(M(1))N

M(N)(β)

)
= −

∫
M(N)

ln

(
dϱ(N)

dµ(N)

)
ϱ(N)(dx1, ..., dxN ) + F (N)

β (µ(N)),

and using the fact that x lnx ≥ x−1, with equality if and only if x = 1, we find
that

F (N)
β (ϱ(N))−F (N)

β (µ(N)) ≤ 0,

with equality holding if and only if ϱ(N) = µ(N).

Next, we show a very important property of the sequence F (N)(β).

Proposition 3.3. Given β < 8
γ , the limit

lim
N→∞

1

N
F (N)(β) =: f(β),

exists and is finite.

The proof of this proposition will follow from the next two lemmata.

Lemma 3.4. The sequence 1
NF (N)(β) is bounded below and above independently

of N .
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Proof: For the bound from below, we apply Jensen’s inequality to M(N)(β)
with the concave function ln(·). This leads to

ln

(
M(N)(β)(
M(1)

)N
)

≥ N

2
βµ̂(1)⊗2(U(x, y)).

Hence,
1

N
F (N)(β) ≥ β

2
µ̂(1)⊗2(U(x, y)).

The bound from above, can be deduced the exact same way as in Proposition
3.1. 2

Lemma 3.5. The sequence N → F (N)(β) is sub-additive. That is, if N =
N1 +N2 then

F (N)(β) ≤ F (N1)(β) + F (N2)(β).

Proof:
We set N = N1 +N2, then we have

F (N)
β (µ(N)) = S(N)(µ(N)) +

β

2
Nµ̂

(N)
2 (U(x, y))

≤ S(N1)(µ
(N)
N1

) + S(N2)(µ
(N)
N2

) +
β

2
(N1 +N2)µ̂

(N)
2 (U(x, y))

≤ F (N1)(β) + F (N2)(β),

where in the first equation, we used the symmetry of U and µ(N) and in the
second inequality the sub-additivity of the entropy S. 2

The boundedness from below and the sub-additivity provided by Lemma 3.4
and 3.5, ensure the result of Proposition 3.3.

3.2 Integrability

The objective now is to show compactness (in the weak sense) of the sequence

(µ
(N)
n )N . In order to do that, we need to show a uniform Lp-boundedness for

the sequence in question. We claim that

Proposition 3.6. There exists a constant K(n, βγ) such that

µ(N)
n (dx1 · · · dxn) ≤ K(n, γβ) exp

 β

N − 1

∑
1≤i<k≤n

U(xi, xj)

τ⊗n.

Proof: First, we write (N − 1)U (N) = W (n) +W (n,N−n) +W (N−n). Here,
W (n) is the term involving (x1, · · · , xn),W (N−n) is the term involving (xn+1, · · · , xN ),
and finally the term W (n,N−n) contains the mixed remaining variables. First

notice that 1
N−1W

(n) → 0 as N → ∞, hence e
β

N−1W
(n)

∈ Lp(M (n)) for N big

14



enough.

Next, we move to the term W (n,N−n) +W (N−n). Indeed, we take q = N−1
2n

and q′ = N−1
N−1−2n and using Hölder’s inequality we get∥∥∥∥exp( β

N − 1

[
W (n,N−n) +W (N−n)

])∥∥∥∥
L1(M(N))

≤
∥∥∥∥exp( β

N − 1
W (n,n−N)

)∥∥∥∥
Lq(M(N))

×∥∥∥∥exp( β

N − 1
W (n−N)

)∥∥∥∥
Lq′ (M(N))

.

The first integral can be bounded the same way as in Proposition 3.1 and the
fact that∥∥∥∥∥exp

(
β

N − 1

n∑
k=1

U(xk, x)

)∥∥∥∥∥
N−n

Lq(M)

=

∥∥∥∥∥exp
(

β

N − 1
(−γ

n∑
k=1

ln |xkx−1|χB1(xk) + H̃(x))

)∥∥∥∥∥
N−n

Lq(M)

≤ C
N−n
N−1

∥∥∥∥∥ 1

|x|
nγβ
N−1

∥∥∥∥∥
N−n

Lq(B1(0))

≤ C(n)

∥∥∥∥∥ 1

|x| γβ
2

∥∥∥∥∥
2n(N−n)

N−1

L1(B1(0))

. (16)

Next we deal with the second term, namely ∥ exp( β
NW

(n−N))∥Lq′ , where

q′ = N−1
N−2n−1 . This can be written as:

∥∥∥∥exp( β

N − 1
W (n−N)

)∥∥∥∥
Lq′ (M(N))

= M(N−n)

(
β
N − n− 1

N − 2n− 1

)1− 2n
N−1

.

Notice that since limN→∞
1
NF (N)(β) exists, we have thatM(N−n)

(
β N−n−1

N−2n−1

)− 2n
N−1

is uniformly bounded. Hence, it remains to bound M(N−n)
(
β N−n−1

N−2n−1

)
. Using

Jensen’s inequality with respect to the measure dµ(1)⊗n, we have

M(N)(β) ≥
(
M(1)

)n
exp

(
n(2N − n− 1)

N − 1
βµ(1)⊗2(U(x, y))

)
M(N−n)

(
N − n− 1

N − 1
β

)
≥ C(n, β)M(N−n)

(
N − n− 1

N − 1
β

)
.

We now consider the density ρ(N−n) defined by

ρ(N−n) =
exp

(
β 1

N−2n−1W
(N−n)

)
M(N−n)

(
N−n−1
N−2n−1β

) .
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We will write ⟨X⟩N the average of X with respect to the density ρ(N−n) and
the measure τ⊗(N−n). Therefore, we have

M(N−n)
(

N−n−1
N−1 β

)
M(N−n)

(
N−n−1
N−2n−1β

) =

〈
exp

(
− 2n

(N − 1)(N − 2n− 1)
βW (N−n)

)〉
N

≥ exp

(
− 2n

(N − 1)(N − 2n− 1)

〈
βW (N−n)

〉
N

)
= exp

(
−2nβ∂β

(
1

N − 1
F (N−n)

(
N − n

N − 2n− 1
β

)))
.

But recall that since β 7→ 1
NF (N)(β) is convex (this is easily verified by taking

two derivatives), the function β 7→ f(β) is also convex. In particular, its deriva-
tive exists almost everywhere and it is non-decreasing. So, for β0 ∈ (β, 4γ ), we
have that

M(N−n)
(

N−n−1
N−1 β

)
M(N−n)

(
N−n−1
N−2n−1β

) ≥ C exp
(
−2nβ∂+β (f(β0))

)
,

where ∂+β f(β0) = limβ→β+
0
∂βf(β). This last limit exists since ∂βf is non-

decreasing and this finishes the proof. 2

The previous proposition states that µ
(N)
n has a density with respect to dτn

(or dµ(1)⊗n), in Lp(M (n)) for all p ≥ 1. In particular the sequence (µ
(N)
n )N is

weakly compact in the space P (M (n))∩Lp(M (n)). We want to characterize the
limit points.

Proposition 3.7. Let us consider a weakly convergent subsequence µ
(a(N))
n that

converges weakly to a limit point, say µ(β) ∈ Ps(Ω). Then the decomposition

measure of µ(β) is concentrated at the maximizers of F (1)
β .

Proof: Recall that

Fβ(µ) = lim
n→∞

1

n
F (n)

β (µn)

=

∫
PE(M)

S(1)(ρ) +
β

2
ρ̂⊗2(U(x, y))ν(dρ|µ). (17)

In particular, if we set

Aβ = sup
ρ∈PE(M)

S(1)(ρ) +
β

2
ρ̂⊗2(U(x, y)) = sup

ρ∈PE(M)

F (1)(β),

then one has
sup

µ∈P s(M)

Fβ(µ) ≤ Aβ .
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On the other hand, we have

F (N)(β) = F (N)
β

(
µ(N)

)
≥ F (N)

β

(
ρ⊗N

)
≥ N

(
S(1)(ρ) +

β

2
ρ⊗2(U(x, y))

)
. (18)

Hence,
f(β) ≥ Aβ .

Next, we write α(N) = n
⌊
α(N)
n

⌋
+m and using the sub-additivity of the entropy

S, we have

S(α(N))(µ(α(N))) ≤
⌊
α(N)

n

⌋
S(n)(µ(α(N))

n ) + S(m)(µ(α(N))
m )

≤
⌊
α(N)

n

⌋
S(n)(µ(α(N))

n ).

Using the upper-semicontinuity of the entropy, we have

lim sup
N→∞

S(n)(µα(N)
n ) ≤ S(n)(µn(β)).

Hence,

lim sup
N→∞

1

α(N)
S(α(N))(µα(N)) ≤ lim sup

1

α(N)

⌊
α(N)

n

⌋
S(n)(µ(α(N))

n )

≤ 1

n
S(n)(µn(β)).

Therefore, if we let n→ ∞, we have

lim sup
N→∞

1

α(N)
S(α(N))(µα(N)) ≤ S(µ(β)).

In particular

f(β) = lim sup
1

α(N)
F (α(N))

β (µ(α(N)))

≤ Fβ(µ(β))

≤ sup
µ∈P s(Ω)

Fβ(µ).

Therefore, Aβ = f(β) = Fβ(µ(β)).
Thus the limiting points concentrate at the maximizers of Aβ . Hence, Aβ =

maxρ∈PE(M) F
(1)
β (ρ).

In fact, one can see that the decomposition measure is actually concentrated on
measures with density that is in Lp(M) for all p > 1. 2
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Next, to finish the proof of Theorem 2.5 we notice that as a consequence of
Proposition 3.7, the maximization problem

f(β) = sup{F (1)
β ; ρ ∈ P (M) ∩ L1Log(L)(M)}

has a solution and thus the solution satisfies the Euler-Lagrange equation

ρβ(x) =
Qeβ

∫
M

U(x,y)ρβ(y) dy∫
M
Qeβ

∫
M

U(x,y)ρβ(y) dy dx
.

The fact that ρβ ∈ Lp(M) follows from the regularity result of the density of

the sequence µ
(N)
n .

3.3 Proof of the Main Result

We start by the caseQ > 0. Using Theorem 2.5, we take u = β
2

∫
M
U(x, y)ρβ(y)dy+

c, where c is a constant to be determined later. Then we have that

P
′
u(x) =

β

2

∫
M

(
Γ(x, y)− Q

′∫
M
Q

′
dv

)
ρβ(y) dy

=
β

2

[
ρTβ − Q

′∫
M
Q

′
dv

]
,

where ρβ = ρTβ + ρ⊥β and ρTβ = Γ(ρβ). Thus

P
′
u+

β

2

Q
′∫

M
Q

′
dx

=
β

2λ
Qe2u−2c − β

2
ρ⊥β ,

where λ =
∫
M
Qeβ

∫
M

U(x,y)ρβ(y) dy dx. Since 0 <
∫
M
Q

′
dx < 16π2, the number

β = 2
∫
M
Q

′
dx satisfies βγ ∈ [0, 8). Moreover, one can pick e−2c = 2λ

β , to obtain
a solution of

P
′
u+Q

′
= Qe2u mod P⊥.

On the other hand, if Q < 0, one can use Theorem 2.5 with −Q instead of Q
and β < 0 and the rest of the procedure follows as in the previous case.

4 Case of the Heisenberg Group

In this section we will extend the previous result to the non-compact case of the
Heisenberg group. Notice that the estimates in the previous section rely on the
compactness of the manifold M , so we need to adapt them to our new setting.
We will be following the procedure developed in [11] and [28] for the Euclidean
case. From now on we fix a ”biharmonic” and pluriharmonic function K. That
is K satisfies

(∆b)
2K = 0 and T 2K = 0.
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One such function would be K(x, y, t) = −(x2 + y2), but one could think of
more complicated functions. We also consider the following two assumptions on
K and Q > 0:

a) For all 0 < q < 4, we have
∫
B1(x)

Q(y)e2K(y)

|xy−1|q dy → 0 as x → ∞, where

B1(x) is the Heisenberg unit ball centered at x.

b) There exists s ≥ 0 such that
∫
HQ(x)e2K(x)|x|sdx <∞.

These assumptions will guarantee that the mass does not escape to infinity. We
define s∗ := sup{s ≥ 0;

∫
HQ(x)e2K(x)|x|sdx <∞} and β∗ = −2s∗.

An explicit computation done in [32] shows that the Green’s function of the

operator P ′ or P
′
has the explicit form G(x, y) = − 1

4π2 ln(|xy−1|) and

P
′
G(·, y) = ReS(·, y),

where S is the Szegő kernel. Therefore, we will take U(x, y) = G(x, y). For
the sake of notation, we will remove the factor 1

4π2 in the definition of U . The
measure τ defined in (10) will be replaced by

τ(dx) = e2K(x)Q(x)dx.

Notice that from assumption (b), we have that the mass M(1) of τ is finite and
hence the probability measure µ(1) is still well defined. The Hamiltonian U (N)

then can be written as

U (N)(x1, · · · , xN ) = − ln(|R(N)|
1

N−1 ),

where R(N) = Π1≤i<j≤N |xix−1
j |. The definition of the entropy and the energy

will remain unchanged. So as in Lemma 3.2, we have that F (N)
β has a unique

minimizer µ(N) that can be written as

µ(N) =
1

M(N)(β)
|R(N)|−

β
N−1 dτ⊗N

=
1

M(N)(β)
exp

( −β
N − 1

∑
1≤i<j≤N

ln(|xix−1
j |)

)
dτ⊗N . (19)

For the well definedness of µ(N) one needs to show that M(N)(β) is finite.

Lemma 4.1. The measure µ(N) is absolutely continuous with respect to the

measure τ⊗N . Moreover, dµ(N)

dτ⊗N ∈ Lp(HN ) for p ∈ [1, 8
β ), if β > 0 and p ∈

[1, β
∗

β ), if β < 0, for N large enough.
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Proof: We have for p ≥ 1∫
HN

|R(N)|−
pβ

N−1

∏
1≤i≤N

τ(dxi) ≤
1

N

∫
HN

N∑
i=1

∏
1≤j≤N ;j ̸=i

|xix−1
j |−

pNβ
2(N−1)

∏
1≤i≤N

τ(dxi)

≤
∫
HN

∏
2≤j≤N

|x1x−1
j |−

pNβ
2(N−1)

∏
1≤i≤N

τ(dxi)

≤
∫
H

(∫
H
|xy−1|−

pNβ
2(N−1) τ(dy)

)N−1

τ(dx)

≤ sup
x∈H

(∫
H
|xy−1|−

pNβ
2(N−1) τ(dy)

)N−1

M(1),

where we used the arithmetic-geometric inequality in the second inequality.
Now, if β > 0, we have that∫
H
|xy−1|−

pNβ
2(N−1) τ(dy) =

∫
B1(x)

|xy−1|−
pNβ

2(N−1) τ(dy) +

∫
H\B1(x)

|xy−1|−
pNβ

2(N−1) τ(dy)

≤ g(x) +M(1).

But using assumption (a), we have that g(x) =
∫
B1(x)

|xy−1|−
pNβ

2(N−1) τ(dy) is in

L∞(H) as long as Np
N−1 <

8
β . The adaptation is clear for the case β∗ < β < 0,

using assumption (b). 2

In order to get weak compactness of the measure µ(N), we need a few Lem-
mata, including the uniform Lp boundedness of the marginals, as in Proposition
3.6.

Lemma 4.2. Given β ∈ (β∗, 8), there exists two constants c1 and c2 depending
only on β such that

c1 ≤ βµ̂
(N)
2 (ln |xy−1|) ≤ βµ̂(1)⊗2(ln |xy−1|) ≤ c2.

Proof: For the last inequality, we use the fact that |xy−1| ≤ c(|x| + |y|) ≤
c(2 + |x|)(2 + |y|). Then from assumptions (a) and (b), we have that

βµ̂(1)⊗2(ln |xy−1|) ≤ c2.

So we move to the second inequality. We define the function fN by

fN (β) = − 2

N
ln(µ̂(1)⊗N (|R(N)|−

β
N ).

Using Jensen’s inequality, we have that

fN (β) ≤ 2β

N(N − 1)
µ̂(1)⊗N (ln(|R(N)|) ≤ βµ̂(1)(ln |xy−1|).

On the other hand, notice that

−2F (N)
β (µ(N)) = NfN (β). (20)
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Therefore

fN (β) =
1

N
(−2S(N)(µ(N))− 2βµ̂(N)(U (N)),

and by the non-positivity of the entropy, we have

βµ̂(1)(ln |xy−1|) ≥ fN (β) ≥ − 2

N
βµ̂(N)(U (N)) = βµ̂

(N)
2 (ln |xy−1|).

It remains to show the first inequality. Since β ∈ (0, 8), there exists ε > 0 such
that (1 + ε)β ∈ (β∗, 8). By applying Jensen’s inequality twice, we have that

M(N)((1 + ε)β) ≥ M(N)(β) exp(−1

2
Nεβµ̂

(N)
2 (ln |xy−1|)).

Hence,

fN (β(1 + ε)) ≤ fN (β) + εβµ̂
(N)
2 (ln |xy−1|).

We now consider the function f0 defined by

f0(β) = − ln
(
sup
x∈H

∫
H
|xy−1|−

β
2 µ(1)(dy)

)
.

Assumption (b) guaranties that f0(β) is well defined and finite and one can
easily check that given β ∈ (0, 8), there exists N0 > 0 such that for N ≥ N0, we
have

fN (β) ≥ f0((1 + ε)β) + f0(β). (21)

Now from (20) and (21), we have that

f0(β) + f0((1 + ε)β) ≤ fN (β) ≤ −2Aβ .

Thus, with ε even smaller if needed, we have

βµ̂
(N)
2 (ln |xy−1|) ≥ 1

ε
(fN ((1+ε)β)−fN (β)) ≥ (f0((1+ε)

2β)+f0((1+ε)β)−Aβ) ≥ c1.

Lemma 4.3. Given β ∈ (β∗, 8), there exists N1 > 0 such that for N ≥ N1,
there exists a constant c3 depending only on β such that

βµ̂(1) ⊗ µ̂
(N)
1 (ln |xy−1|) ≤ c3.

Proof: We start by the case β ∈ (β∗, 0). In this case, we have

βµ̂(1) ⊗ µ̂
(N)
1 (ln |xy−1|) ≤ µ̂

(N)
1

(∫
B1(x)

β ln |xy−1|µ1(dy)
)

µ̂
(N)
1 (c3) = c3.

For β ∈ (0, 8), we use the inequality |xy−1| ≤ c(|x|+ 2)(|y|+ 2) to obtain

µ̂(1) ⊗ µ̂
(N)
1 (ln |xy−1|) ≤ c̃+ µ̂(1)(ln(2 + |x|)) + µ̂

(N)
1 (ln(2 + |y|)).
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Assumption (a) yields
µ̂(1)(ln(2 + |x|)) ≤ C1.

Therefore, it remains to bound the second term. First, we have for β′ = (1 −
1

N−1 )β,

µ̂
(N)
1 (ln(2 + |y|)) =M(N−1)(β′)

M(N)(β)

∫
HN−1

|R(N−1)|−
β′

N−2

M(N−1)(β′)
×

(∫
H

N−1∏
i=1

|xiy−1|−
β

N−1 ln(2 + |y|)τ(dy)
)N−1∏

i=1

τ(dxi).

We fix s ∈ (0, s∗), where s∗ is the sup of all s > 0 for which (b) holds. Using
the inequality eX + Y ln(Y )− Y ≥ XY , for

X = es ln(2+|y|),

and

Y =
1

s

∫
HN−1

|R(N−1)|−
β′

N−2

M(N−1)(β′)

N−1∏
i=1

|xiy−1|−
β

N−1

N−1∏
i=1

τ(dxi),

yields

CN (β) := µ̂
(N)
1 (ln(2 + |y|))− M(N−1)(β′)

M(N)(β)

∫
H
exp(s(2 + |y|))τ(dy)

≤ −1

s
(1 + ln(s) + β′µ̂

(N)
2 (ln |x− y|))

≤ c̃2(β),

where the last inequality follows from Lemma 4.2. Clearly, from assumption
(b), we have the finiteness of the integral

∫
H exp(s ln(2 + |y|))τ(dy). Therefore,

in order to finish the proof, it is enough to show the N -independent bound of

the quotient M(N−1)(β′)
M(N)(β)

. This last bound will be more involved and needs a

different approach from the previous estimates. It follows the same idea as in
[11] and [28] but we will add it here for the sake of completion. We start by
regularizing the potential (x, y) 7→ ln |xy−1| by defining the function

Vε(x, y) =
1

|Bε(0)|2

∫
Bε(x)

∫
Bε(y)

ln |ab−1| dadb.

By the Lebesgue differentiation theorem (which holds in the Heisenberg groupH.
In fact, it holds for more general metric measure spaces with doubling measure
[18, Section 3.4]), we have that Vε(x, y) → ln |xy−1|, for almost every x, y ∈ H.

Next, we define the quantity M(N)
ε (β), by substituting ln(|xy−1|) with Vε(x, y)

in (19). We consider the Hilbert space Hε obtained by the completion of the
set of C∞

0 (H) functions with mean zero, under the dot product ⟨·, ·⟩ε defined by

⟨f, g⟩ε = − β

N − 1

∫
H

∫
H
f(x)Vε(x, y)f(y) dxdy.
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We also consider the measures δ♯y ∈ Hε defined by

δ♯y = δy − χBr0
,

where r0 is picked so that |Br0 | = 1. We introduce the function Wε and the
measure τ̃ defined by

Wε(x) =

∫
Br0

Vε(x, y) dy −
1

2

∫
Br0

Vε(x, y) dy,

and
τ = eβWε τ̃ .

With this notation, an easy computation shows that

M(N)
ε (β) =

∫
HN

exp(− β

N − 1

∑
1≤i<j≤N

Vε(xi, xj))
N∏
ℓ=1

eβWε(xℓ)τ̃(dxℓ)

= e−
Nβ

2(N−1)
Vε(0,0)

∫
HN

exp(
1

2
⟨δ♯(N), δ

♯
(N)⟩ε)

N∏
ℓ=1

τ̃(dxℓ),

where δ♯(N) =
∑N

i=1 δ
♯
xi

and where we used the translation invariance of the

measure in the Heisenberg group to write Vε(xi, xi) = Vε(0, 0). Now using
Minlo’s theorem for Gaussian functional integration (see [16]), we have the ex-
istence of a Gaussian average Ave(·) on the space of linear forms φ, on Hε, with
Ave(φ(δ♯x) = 0 and

Ave(φ(δ♯x)φ(δ
♯
x)) =

β

N − 1
Vε(x, y).

Therefore,

Ave(exp(φ(δ♯(N)))) = exp(
1

2
⟨δ♯(N), δ

♯
(N)⟩ε).

Hence,

M(N)
ε (β) = e−

Nβ
2(N−1)

Vε(0,0)Ave
(( ∫

H
exp(φ(δ♯x))τ̃(dx)

)N)
.

Using Jensen’s inequality, we have that

M(N)
ε (β) ≥

(
M(N−1)

ε (β′)
) N

N−1

.

Thus, after letting ε→ 0, one has

M(N)(β)

M(N−1)(β′)
≥
(
M(N−1)(β′)

) 1
N−1

.

But recall that lim infN→∞
1
NF (N)(β) ≥ Aβ , therefore

lim inf
N→∞

M(N)(β)

M(N−1)(β′)
≥ M(1)e−Aβ ,

which finishes the proof. 2
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Proposition 4.4 (Uniform Boundedness). Given n ≥ 1 and β ∈ (β∗, 8), there
exists N(n, β) ∈ N and a constant C(n, β) such that, for N ≥ N(n, β),

dµ
(N)
n

dτ⊗n
≤ C(n, β)|R(n)|−

β
N−1 .

Proof: First, we write

dµ
(N)
n

dτ⊗n
= K(x1, · · · , xn)

|R(n)|−
β

N−1

M(N)(β)
,

where

K(x1, · · · , xn) =
∫
H(N−n)

∏
1≤i≤n<j≤N

|xix−1
j |−

β
N−1

∏
n≤k<ℓ≤N

|xix−1
j |−

β
N−1 τ(dxj).

Using Hölder’s inequality, there exists N(n, β) such that for N > N(n, β) we
have

K(x1, · · · , xn) ≤
(∫

HN−n

∏
1≤i≤n<j≤N

|xix−1
j |−

β
2n τ(dxj)

)− 2n
N−1×

(∫
HN−n

∏
n≤i<j≤N

|xix−1
j |−

β
N−1−2n τ(dxj)

)1− 2n
N−1

.

For the first term of the right hand side, we have∫
HN−n

∏
1≤i≤n<j≤N

|xix−1
j |−

β
2n τ(dxj) =

(∫
H

n∏
i=1

|xix−1|−
β
2n τ(dx)

)N−n

≤
( 1
n

∫
H

n∑
i=1

|xix−1|−
β
2 τ(dx)

)N−n

≤


(
supy∈H

∫
H |yx−1|−

β
2 τ(dx)

)N−n

if β ≥ 0(
Cn

∫
H(2 + |x|)

−β
2 τ(dx)

)N−n

if β < 0.

Hence, the first term is bounded uniformly in N . For the second term, we first
consider

AN =
(∫

HN−n

∏
n≤i<j≤N

|xix−1
j |−

β
N−1−2n τ(dxj)

)− 2n
N−1

=
(
M(N−n)(k(N)β)

)− 2n
N−1

,

where k(N) = N−n−1
N−2n−1 . Notice here that when N > N(n, β), 1 < k(N) < 8

β , if

β ∈ (0, 8) and 1 < k(N) < β∗

β , if β ∈ (β∗, 0). Then clearly

lim sup
N→∞

AN ≤
(e−Aα

M(1)

)
.
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Therefore, in order to finish the proof, one needs to bound M(N−n)(k(N)β)
M(N)(β)

. In-

deed, using Jensen’s inequality

M(N−n)(k(N)β)

M(N)(β)
≤ 1(

M(1)
)n exp

( n(n− 1)

2(N − 1)
βµ̂(1)⊗2(ln |xy−1|)

)
×

exp
(
n(1− n

N − 1
)βµ̂(1) ⊗ µ̂

(N−n),k
1 (ln |xy−1|)

)
×

exp
(
− n(

N − n− 1

N − 1
)k(N)βµ̂

(N−n),k
2 (ln |xy−1|)

)
,

where µ(N−n,k) is defined the same way as µ(N) with β switched with K(N)β.
By Lemma 4.2, The first exponential term is then bounded uniformly with
respect to N and since k(N) → 1 as N → ∞, using the upper bound in Lemma
4.2 and the upper bound in Lemma 4.3, we get the uniform boundedness of the
the desired quantities. 2

The last ingredient for the weak-compactness of the sequence (µ
(N)
n )n≤N is

its tightness, since we are working in a non-compact domain (see [2]). We recall
that a sequence of probability measures (pk)k≥1 is said to be tight if for all
ε > 0, there exists a compact set Kε such that

pk(Kε) ≥ 1− ε, for all k ≥ 1.

So we show the following

Lemma 4.5. The sequence (µ
(N)
n )n≤N is tight.

Proof: Using the symmetry of the measure µ
(N)
n , it is enough to show tight-

ness for the case n = 1. Namely, we need to show that given ε > 0, there exists
R(ε) such that

µ
(N)
1 (BR(ε)) ≥ 1− ε.

Then we consider the map h : H → R defined by

h(y) =

∫
H
ln |yx−1|µ(1)(dx) + C,

where C is a constant chosen so that h is positive. It is possible to choose such a
constant since, by construction of µ(1), h is continuous and limy→∞ h(y) = +∞,
uniformly in y. Therefore, from Lemma 4.3, given ε > 0, there exists R(ε) > 0,
such that

µ̂
(N)
1 (h(x))

1

ε
≤ C(β)

ε
≤ inf

x ̸∈BR(ε)

h(x).

Thus,

µ̂
(N)
1 (h(x)) ≥ µ̂

(N)
1 (h(x)χH\BR(ε)

)

≥ 1

ε
µ̂
(N)
1 (h(x))µ̂

(N)
1 (χH\BR(ε)

)

≥ 1

ε
µ̂
(N)
1 (h(x))(1− µ

(N)
1 (BR(ε))).
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The result follows after dividing by 1
ε µ̂

(N)
1 (h(x)). 2

Now given the weak compactness, the rest of the procedure of Section 3 can
be carried out to prove the following

Theorem 4.6. Given a function Q > 0 satisfying (a) and (b). Then, for any
β ∈ (β∗, 8), there exists ρβ ∈ Lp(H) for all p ≥ 1, such that

ρβ(x) =
Q(x)eK(x)−β

∫
H ln |xy−1|ρβ(y) dy∫

HQ(x)eK(x)−β
∫
H ln |xy−1|ρβ(y) dy dx

.

Theorem 1.2 and Corollary 1.3 are a direct corollary of the previous theorem.
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on three-dimensional CR manifolds. In Complex geometry (Osaka, 1990),
volume 143 of Lecture Notes in Pure and Appl. Math., pages 67–76. Dekker,
New York, 1993.

[22] Hirachi, K., Q-prime curvature on CR manifolds, Differential Geom.
Appl., 33(suppl.):213– 245, (2014).

[23] Hsiao, C.Y., On CR Paneitz operators and CR pluriharmonic functions,
Math. Ann. 362:903–929 (2015).

[24] Kiessling, M.K.-H., Statistical mechanics of classical particles with log-
arithmic interactions, Commun. Pure Appl. Math. 46, pp. 27—56 (1993).

[25] Kiessling, M.K.-H., Statistical mechanics approach to some problems in
conformal geometry, Physica A 279, 353–368 (2000).

[26] Kiessling, M.K.-H., Typicality analysis for the Newtonian N-body prob-
lem on S2 in the N → ∞ limit. J. Stat. Mech. Theory Exp. 2011, no. 1,
P01028, 70 pp.

27



[27] Lee, J. M., Pseudo-Einstein structures on CR manifolds, Amer. J. Math.,
110, 157–178 (1988).

[28] Maalaoui, A., Prescribing the Q-curvature on the sphere with conical
singularities, Discrete Contin. Dyn. Syst. 36:6307–6330 (2016).

[29] Messer, J., Spohn, H., Statistical mechanics of the isothermal Lane-
Emden equation, J. Stat. Phys. 29, 561–578 (1982).

[30] Takeuchi, Y., Nonnegativity of the CR Paneitz operator for embeddable
CR manifolds. Duke Math. J. 169, no. 18, 3417–3438 (2020).

[31] Troyanov, M., Prescribing Curvature on Compact Surfaces with Conical
Singularities, Trans. Am. Math. Soc. 324(2)(1991), 793–821.

[32] Wang, Y., Yang, P., Isoperimetric inequality on CR manifolds with non-
negative Q′-curvature, Annali Della Scuola Normale di Pisa, Vol. XVIII,
issue 1 (2018).

28


	Prescribing the Q¯ ′ -curvature on pseudo-Einstein CR 3-manifolds
	Repository Citation

	tmp.1710518119.pdf.qG9Ma

