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FUNCTION SPACES VIA FRACTIONAL POISSON KERNEL
ON CARNOT GROUPS AND APPLICATIONS

By

ALI MAALAOUI, ANDREA PINAMONTI AND GARETH SPEIGHT

Abstract. We provide a new characterization of homogeneous Besov and
Sobolev spaces in Carnot groups using the fractional heat kernel and Poisson
kernel. We apply our results to study commutators involving fractional powers of
the sub-Laplacian.

1 Introduction

Besov and Sobolev spaces measure regularity of functions and are of central
importance in the study of PDEs. There has been much work on these spaces
and their characterization in different settings. Such alternative characterizations
provide flexibility for applications. In this work, we give a new characterization of
homogeneous Besov and Sobolev spaces in Carnot groups using the fractional heat
kernel and Poisson kernel. We use this to study commutators involving fractional
powers of the sub-Laplacian.

A Carnot group is a Lie group whose Lie algebra admits a stratification. This
decomposes the Lie algebra as a direct sum of vector subspaces, the first of which
is called the horizontal layer and generates the other subspaces via Lie brackets.
Carnot groups have a rich geometric structure adapted to the horizontal layer,
including translations, dilations, Carnot–Carathéodory (CC) distance, and a Haar
measure [1, 17, 32, 38]. Carnot groups have been studied in contexts such as
differential geometry [17], subelliptic differential equations [11, 25, 24], real and
complex analysis [45, 40, 41]. For an introduction to Carnot groups from the point
of view of this paper and for further examples, we refer to [11, 25, 45].

In the Euclidean case there have been characterizations of Besov and
Sobolev spaces using multiple tools, mostly relying on the Fourier transform and
Littlewood–Paley decompositions [12, 13, 14]. In Carnot groups there have been
a few characterizations of such spaces, for instance using the heat kernel [43] and
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2 A. MAALAOUI, A. PINAMONTI AND G. SPEIGHT

a spectral multiplier version of Besov spaces [28]. We also mention the use of a
Littlewood–Paley decomposition in the study of the phase space in the Heisenberg
group [5, 6]. This uses the Fourier transform in that setting. We also point out the
extension of the characterization in [43] to the case of metric measure spaces with
heat kernels satisfying a Gaussian bound, [16]. As we will see later on, the kernels
that we will be using do not satisfy this bound.

The heat kernel and fractional heat kernel in Carnot groups have been studied
for some time, e.g., see [23] and the references therein. The Poisson kernel in
Carnot groups was introduced and studied in [26], but the fractional one is a
recent discovery. It was first introduced and studied in [22] to exhibit a Harnack-
type estimate for the fractional Laplacian. The method of construction follows
the classical one introduced by Caffarelli and Silvestre in [15], but here using the
spectral resolution of the sub-Laplacian. We also point out that there is also another
construction for a different fractional Poisson kernel in the Heisenberg group for
the conformal fractional sub-Laplacian in [27] and the construction relies mainly
on the Fourier transform.

In this paper we start by defining a norm using the fractional heat kernel which
ends up being equivalent to the classical homogeneous Besov norm as stated in
Theorem 3.4. This procedure is close to the one of [43] and it does rely partially
on the semigroup property of the fractional heat kernel. Next, we study different
properties of the fractional Poisson kernel, allowing us, as stated in Theorem 4.6,
to provide different equivalent norms to the classical homogeneous Besov spaces.
The main challenge in this procedure is to bypass the use of the Fourier transform
and still keep certain harmonic analysis properties of the different kernel we are
considering. Also, in the same spirit, in Theorem5.1, we provide a lower bound for
the fractional Sobolev norms using a square-function-type quantity involving the
convolution with the Poisson kernel and we finish in Proposition 5.5, by providing
a characterization of the BMO norm.

Concerning applications of our results, the second characterization that we
provide for Besov and Sobolev spaces appears to be well suited to the study of
commutators involving fractional powers of the sub-Laplacian. We recall that, in
[36], the first author provided a family of estimates for the commutator of the frac-
tional sub-Laplacian using a more direct approach in estimating the singular kernel
of the operator. In this work we provide an extended result, which generalizes
many classical commutator estimates known in the Euclidean setting to the case
of Carnot groups. For instance, in Theorems 6.5 and 6.6 we provide bilinear-type
estimates for three-term commutators involving the fractional sub-Laplacian. In
fact the first result (namely Theorem 6.5) provides Lp-type estimates and the sec-
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ond result deals with the borderline setting of bounding the Hardy norm. Also, in
Theorem 6.7, we provide a proof of the Chanillo-type commutator estimates for
the Carnot group setting. We follow closely the ideas provided in the Euclidean
setting [35] to use the fractional Poisson kernel to simplify the expressions of
the commutators. But we point out that in the Euclidean case, the estimates and
characterizations of the different spaces was established separately in [12]. This is
why, in our case, we first have to cross the difficulty of characterizing these spaces.

In general, commutator estimates are a fundamental tool in the study of the
regularity of PDE, especially in the fractional setting. For instance, in Carnot
groups, [36] gives applications to the study of the regularity and decay of solutions
to the fractional CR-Yamabe problem, while [33] characterizes the asymptotic
profile decomposition of Palais–Smale sequences for the same problem. In the
Euclidean setting one has even more applications of commutator estimates [34, 44,
20, 21].

The structure of the paper is as follows.

In Section 2 we provide the necessary preliminaries on the structure of Carnot
groups, the sub-Laplacian and the heat kernel.

In Section 3 we provide a characterization of Besov spaces using the fractional
heat kernel. This is the kernel of the flow generated by the fractional power of
the sub-Laplacian. The proof in this section follows the approach in [43], where
an analogous characterization of Besov spaces was obtained using the standard
(non-fractional) heat kernel and Poisson kernel.

In Section 4 and Section 5 we move to the characterization of Besov, Sobolev
and BMO spaces using the fractional Poisson kernel. Here we generalize ideas in
the Euclidean setting and avoid notions involving the Fourier transform because
that is a tool that we cannot afford in Carnot groups in general.

In Section 6 we provide several applications of our results to estimates for
commutators of fractional powers of the sub-Laplacian. Such estimates were
established and studied in the Euclidean setting in [18, 20, 21, 35, 34, 44].
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to its improvement.
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Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta
Matematica (INdAM).

This work was supported by a grant from the Simons Foundation (#576219,
G. Speight).



4 A. MAALAOUI, A. PINAMONTI AND G. SPEIGHT

2 Preliminaries

2.1 Carnot groups.

Definition 2.1. A connected and simply connected Lie group (G, ·) is a
Carnot group of step k if its Lie algebra g admits a step k stratification.
This means that there exist non-trivial linear subspaces V1, . . . ,Vk of g such that

(2.1) g = V1 ⊕ · · · ⊕ Vk

where [V1,Vi] = Vi+1 for 1 ≤ i < k and [V1,Vk] = {0}. Here [V1,Vi] is the
subspace of g generated by the commutators [X,Y] with X ∈ V1 and Y ∈ Vi.

Let mi = dim(Vi) for i = 1, . . . , k. Define h0 = 0 and hi = m1 + · · · + mi for
i = 1, . . . , k. We also use the notation n := hk and m := m1. The homogeneous
dimension of G is then defined by Q :=

∑k
i=1 i dim(Vi).

Choose a family of left invariant vector fields X = {X1, . . . ,Xn} adapted to
the stratification of g, i.e., such that Xhj−1+1, . . . ,Xhj is a basis of Vj for each
j = 1, . . . , k. This identifies g with Rn. Using exponential coordinates of the first
kind we identify G with g and hence with R

n. With these coordinates, Xi(0) = ei

for i = 1, . . . , n.

Definition 2.2. The sub-bundle of the tangent bundle TG that is spanned by
the vector fields X1, . . . ,Xm plays a particularly important role in the theory. It is
called the horizontal bundle HG. The fibers of HG are

HxG = span{X1(x), . . . ,Xm(x)}, x ∈ G.

We can endow each fiber of HG with a corresponding inner product 〈·, ·〉 and with
a norm | · | that make the basis X1(x), . . . ,Xm(x) an orthonormal basis. The sections
of HG are called horizontal sections and a vector of HxG a horizontal vector.
Each horizontal section is identified by its canonical coordinates with respect to
this moving frame X1(x), . . . ,Xm(x). This way, a horizontal section φ is identified
with a function φ = (φ1, . . . , φm) : Rn → R

m.

Definition 2.3. For any x ∈ G, the left translation τx : G → G is defined
by τxz = xz.

For any λ > 0, the dilation δλ : G → G is defined as

(2.2) δλ(x) = (λξ1, . . . , λ
kξk),

where x = (ξ1, . . . , ξk) ∈ Rm1 × · · · × Rmk ≡ G.
The Haar measure of G = (Rn, ·) is the Lebesgue measure in R

n. If A ⊂ G

is Lebesgue measurable, we write |A| to denote its Lebesgue measure.
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Let | · | : G → [0,∞) denote a symmetric homogeneous norm on G [11],
meaning:

• | · | is continuous,
• |δλ(x)| = λ|x| for every λ > 0,
• |x−1| = |x|.
Note that any two continuous homogeneous norms are equivalent, i.e., within

constant multiplicative constant factors of each other. All the estimates we give
are the same if the norm is changed up to changes in constants. We denote the ball
centered at a point x ∈ G with radius r > 0 by

B(x, r) = {y ∈ G : |y−1x| < r}.

We denote balls centered at the identity 0 by B(r) = B(0, r).

Given two non-negative functions f and g, we shall write f � g if there exists a
constant C such that

f (x) ≤ Cg(x)

for all x ∈ G. Similarly we shall write f ≈ g if f � g and g � f .

Definition 2.4. Suppose f : G → R is a function for which Xjf exists for
1 ≤ j ≤ m. Then we define the horizontal gradient of f as the horizontal
section whose coordinates are (X1f, . . . ,Xmf ):

∇Gf :=
m∑
i=1

(Xif )Xi.

We denote by �b the positive sub-Laplacian defined by

�bf :=
m∑
j=1

XjXjf

whenever f is a function such that XjXjf exists for 1 ≤ j ≤ m.

If � ⊂ G is an open set, we define C∞(�) as in the classical case when � is a
subset of Rn. We will use the inequality

‖f (·y) − f (·)‖L1 � |y|‖∇Gf‖L1

for all y ∈ G and sufficiently smooth f : G → R. This is a consequence of the
Fundamental Theorem of Calculus.
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2.2 Heat kernel. For every multi-index β = (β1, . . . , βn) ∈ N
n, we denote

|β| = β1 + · · · + βn

and
Dβ = Xβ1

1 · · ·Xβn
n

where
Xβi

i = XiXi · · ·Xi︸ ︷︷ ︸
βi−times

.

We also use the notation (∂/∂xi)β or ∂β to denote differentiation with respect to the
standard basis of Rn. The Schwartz space and space of distributions are defined as
in the classical setting, which we now briefly recall.

Definition 2.5. We define the Schwartz space S(G) by identification of G
with R

n:

S(G) ={φ ∈ C∞(G) : P(∂/∂xi)
βφ is bounded on G

for every polynomial P and every multi-index β}.
We equip S(G) with the following seminorms for multi-indices α, β ∈ Nn:

‖φ‖α,β = sup
x∈G

|xαDβφ|.

The convolution of two functions f, g : G → R is defined whenever it makes
sense by

(f ∗ g)(x) =
∫
Rn

f (xy−1)g(y) dy =
∫
Rn

g(y−1x)f (y) dy.

Definition 2.6. The continuous dual of S(G) with the family of seminorms
‖ · ‖α,β is the space of distributions on G, denoted S′(G).

The action of a distribution f on a Schwartz function φ is denoted 〈f, φ〉. The
convolution f ∗ φ of f and φ is defined by

(f ∗ φ)(x) = 〈f, φ̃〉
where φ̃(y) = φ(y−1x). If α is a multi-index, the derivative ∂αf of a distribution f
is defined by

〈∂αf, ϕ〉 = (−1)|α|〈f, ∂αϕ〉 ϕ ∈ S(G).

Define the parabolic version of a Carnot group G by Ĝ := R × G. This is a
Carnot group where the group operation in the first coordinate is the usual addition
and its homogeneous dimension is Q + 2. We define dilations on Ĝ by

δ̂λ(t, x) = (λ2t, δλ(x)).
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Definition 2.7. The heat operator is the operator H on Ĝ defined by

H := ∂t +�b.

The heat operator is:

• translation invariant, i.e., for any g ∈ G, H(u ◦ τg) = (H(u)) ◦ τg,
• homogeneous of degree 2, i.e., for any λ > 0, H(u ◦ δ̂λ) = λ2Hu,
• hypoelliptic, i.e., if u is a distribution on Ĝ such that Hu is C∞ in some open

set �, then u must be C∞ on �.

Definition 2.8. The heat operator H admits a fundamental solution h, usually
called the heat kernel for G.

Write ht(x) := h(t, x) and define for f locally integrable on R
n:

Ht f (x) = (f ∗ ht)(x) =
∫
Rn

h(t, y−1x)f (y) dy

whenever the integral exists. Then {Ht}t>0 is called the heat semigroup for G.

We now recall properties of h and Ht; see for example [11, 26] or [47, Section
IV. 4]

Theorem 2.9. The heat kernel h satisfies:

(1) h ∈ C∞(Ĝ \ {(0, 0)});
(2) h(λ2t, δλ(x)) = λ−Qh(t, x) for every x ∈ G and t, λ > 0;
(3) h(t, x) = 0 for every t < 0 and

∫
G

h(t, x) dx = 1 for every t > 0;

(4) h(t, x) = h(t, x−1) for every t > 0 and x ∈ G;
(5) there exists c ≥ 1 (depending only on G) such that for every x ∈ G and t > 0

(2.3) c−1t−Q/2 exp
(

− |x|2)
c−1t

)
≤ h(t, x) ≤ ct−Q/2 exp

(
− |x|2

ct

)
;

(6) for every non-negative integer k and β ∈ Nn, there exists c = c(β, k) > 0 such

that for every x ∈ G and t > 0

(2.4)
∣∣∣ ∂k

∂tk
Dβh(t, x)

∣∣∣ ≤ ct−
Q+j+2k

2 e− |x|2
t .

Further, for any f ∈ L1(Rn) and t > 0, we have Ht f ∈ C∞(Rn) and u(t, x) = Ht f (x)
solves Hu = 0 in (0,∞) × R

n. Also u(t, x) → f (x) strongly in L1(Rn) as t → 0.

We now recall that the fractional sub-Laplacian and its inverse can be expressed
using the heat semigroup Ht as in [25].
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Definition 2.10. We define the fractional sub-Laplacian by

(−�b)
αf = lim

ε→0

1
�(1 − α)

∫ ∞

ε
t−α(−�b)Ht f dt(2.5)

and
(−�b)

−αf = lim
η→∞

1
�(α)

∫ η

0
tα−1Ht f dt,

where 0 < α < 1 and f ∈ L2(G) is any function for which the relevant limit exists
in L2 norm.

We recall the following proposition [25, 26].

Proposition 2.11. For 0 < α < Q the integral

Rα(x) =
1

�(α2 )

∫ ∞

0
t
α
2 −1h(t, x) dt, x ∈ G,

converges absolutely and has the following properties:

• Rα is a kernel of type α, i.e., is C∞ away from 0 and homogeneous of degree
α− Q;

• Rα ∗ Rβ = Rα+β for α, β > 0 and α + β < Q;
• R2 is the fundamental solution of −�b, i.e., (−�b)R2 = δ0;
• for f ∈ Lp(G) and 1 < p < ∞, we have (−�b)−αf = f ∗ R2α.

From Proposition 2.11 and Theorem 2.9 it follows that Rα(x) ≈ |x|−Q+α. Also
the function ρ(x) = (Rα(x))

1
α−Q defines a symmetric homogeneous norm which

is smooth away from the origin and induces a quasi-distance equivalent to the
left-invariant Carnot–Carathéodory distance.

In a similar way one can define the function R̃α, introduced in [22], for α < 0
and α �∈ {0,−2,−4, . . .} by

R̃α(x) =
α
2

�(α2 )

∫ ∞

0
t
α
2 −1h(t, x) dt.

Again, R̃α is homogeneous of degree α− Q and

(2.6) R̃α(x) ≈ |x|α−Q.

Using classical interpolation (or what is called λ-kernel estimates in [26]) one has,
for 0 < α < Q,

(2.7) ‖Rαu‖Lp � ‖u‖Lq

for 1
p = 1

q − α
Q and 1 < q < Q. Using R̃α one can define another representation for

the fractional sub-Laplacian. The following theorem is from [22, Theorem 3.11].
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Theorem 2.12. If u ∈ S(G), then for 0 < α < 1 :

(−�b)
αu(x) = P.V.

∫
G

(u(y) − u(x))R̃−2α(y
−1x) dy

= lim
ε→0+

∫
G\B(x,ε)

(u(y) − u(x))R̃−2α(y
−1x) dy.

Moreover, using Balakrishnan’s approach (see [7, 8]) and what is proved in [29,
Lemma 8.5] (see also [23]) we also have the following formula

Theorem 2.13. If u ∈ S(G), then for 0 < α < 1 :

(−�b)
αu(x) = − α

�(1 − α)

∫ ∞

0
t−α−1(Htu(x) − u(x)) dt

=
1

�(−α)
∫ ∞

0
t−α−1(Htu(x) − u(x)) dt.

The integral in the right-hand side must be interpreted as a Bochner integral
in L2(G).

2.3 Spectral analysis in carnot groups. We collect here some well-
known results in Spectral Analysis which will be used later in the paper.

Since −�b is self-adjoint with domain {f ∈ L2(G) : −�bf ∈ L2(G)}, we can
consider its spectral resolution

∫ ∞
0 λdE(λ). Then [25, (3.12)]

(−�b)
α =

∫ ∞

0
λα dE(λ),

with domain

W2α,2(G) =
{

u ∈ L2(G) :
∫ ∞

0
λ2α d 〈E(λ)u, u〉 < ∞

}
.

Any bounded Borel measurable function m on [0,∞) defines an operator on L2(G)
by

m(−�b) =
∫ ∞

0
m(λ) dE(λ).

Let Km denote the convolution kernel of the operator m(−�b), namely Km is a
distribution on G satisfying

(2.8) m(−�b)u = u ∗ Km for u ∈ S(G).

If m is also compactly supported, then Km ∈ L2(G) and there exists a regular Borel
measure σm on [0,∞), whose support is the L2 spectrum of −�b, such that [37,
Theorem 3.10]: ∫

G

|Km(x)|2 dx =
∫ ∞

0
|m(λ)|2 dσm(λ).
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Remark 2.14. For any function f on G and any λ > 0, set dλf (x) = f (δλ(x)).
We claim:

(2.9) d−1
λ (−�b)

αdλ = λ2α(−�b)
α.

Indeed, by Theorem 2.12 we get

d−1
λ (−�b)

αdλf (x) = lim
ε→0+

∫
G\B(δ 1

λ
x,ε)

(dλf (y) − dλf (δ 1
λ
x))R̃−2α(y

−1δ 1
λ
x) dy

= lim
ε→0+

∫
G\B(δ 1

λ
x,ε)

(f (δλy) − f (x))R̃−2α(δ 1
λ
((δλy)

−1x)) dy

= λQ+2α lim
ε→0+

∫
G\B(δ 1

λ
x,ε)

(f (δλy) − f (x))R̃−2α((δλy)
−1x) dy

where in the last equality we used R̃−2α(δ 1
λ
((δλy)−1x) = λQ+2αR̃−2α((δλy)−1x). The

conclusion follows by a change of variables.

Similar to above, one can check that for any m ∈ L∞((0,∞)) we have

(2.10) d−1
λ m((−�b)

α)dλ = m(λ2α(−�b)
α).

Remark 2.15. Given m ∈ L∞((0,∞)) and t > 0, set

m̂(λ) = m(
√
λ) and mt(λ) = m(t

√
λ).

For any f ∈ S(G),

mt((−�b))f = m(t(−�b)
1
2 )f = d−1

t m((−�b)
1
2 )dt f = d−1

t m̂((−�b))dt f

= d−1
t (dt f ∗ Km̂)

= t−Q(f ∗ d−1
t Km̂).

Hence

Kmt (x) = t−QKm̂(δ 1
t
(x)).(2.11)

Now suppose that α > Q/2 and fix η ∈ C∞
0 (0,∞) not identically zero. If m

satisfies

sup
t

‖η(·)m(t·)‖Wα,2(R) <∞,(2.12)

then by [19, Lemma 6], Kt
m ∈ L1(G) uniformly in t ∈ (0,∞). Here Wα,2(R)

denotes the standard fractional Sobolev space of order α.
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2.4 Semigroups. We recall a few properties of the semigroups generated
by fractional powers of generators of strongly continuous semigroups. We refer to
[48, Section 11, Chapter IX] for more information and all the missing proofs.

2.4.1 General semigroups It is well known that (�b)α is the generator of
a Markovian semigroup {etAα}t>0 which is related to {etA}t>0 by the subordination
formula

etAαu =
∫ ∞

0
ft,α(s)e

sAu ds(2.13)

=
∫ ∞

0
f1,α(τ)e

τt1/αAu dτ(2.14)

where

ft,α(λ) =

⎧⎨
⎩

1
2πi

∫ σ+i∞
σ−i∞ ezλ−tzα dz if λ ≥ 0,

0 if λ < 0,

for σ > 0, t > 0 and 0 < α < 1. Thanks to [48, Proposition 2 of Section 11,
Chapter IX], ft,α(λ) is non-negative for λ ≥ 0 and for λ > 0

∫ ∞

0
ft,α(s)e

−sλ ds = e−tλα.(2.15)

Moreover,

ft,α(s) ≤ min
{ 1

t1/α
,

t
s1+α

}
(2.16)

and for −∞ < δ < α ∫ ∞

0
ft,α(s)s

δ ds =
�(1 − δ/α)
�(1 − δ)

tδ/α(2.17)

and if δ ≥ α

∫ ∞

0
ft,α(s)s

δ ds = +∞.(2.18)

2.4.2 Heat semigroup. Let us now examine the heat semigroup. In this
case, (−�b)α is defined in (2.5) and its domain is W2α,2(G). We may use (2.13)
and the equation et(−�b)u = Htu to write

et(−�b)αu(x) =
∫ ∞

0
ft,α(s)

(∫
G

h(s, y−1x)u(y) dy
)

ds for u ∈ L2(G).
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Hence, using Theorem 2.9 and (2.14), we have

et(−�b)αu(x) =
∫ ∞

0
eτt

1/α(−�b)u(x)f1,α(τ) dτ

=
∫ ∞

0

(∫
G

h(τt1/α, y−1x)u(y) dy
)
f1,α(τ) dτ

=
∫
G

(∫ ∞

0
h(τt1/α, y−1x)f1,α(τ) dτ

)
u(y) dy.

Thus, the function

(2.19) hα(t, y) =
∫ ∞

0
h(τt

1
α , y)f1,α(τ) dτ

is the integral kernel of the semigroup et(−�b)α , i.e.,

(2.20) et(−�b)αu(x) =
∫
G

hα(t, y
−1x)u(y) dy for u ∈ L2(G).

2.5 Besov spaces. We now recall the definition of the Besov space Bs
p,q(G)

[43].

Definition 2.16. Let 0 < s < 1, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞.
The Besov space Bs

p,q(G) is defined for q < ∞ by

Bs
p,q(G) :=

{
f ∈ Lp(G) :

∫
G

(‖f (xy) − f (x)‖Lp

|y|s
)q dy

|y|Q <∞
}
.

The Besov space Bs
p,∞(G) is defined by

Bs
p,∞(G) :=

{
f ∈ Lp(G) : sup

y�=0

‖f (xy) − f (x)‖Lp

|y|s < ∞
}
.

We define the corresponding semi-norms by

‖f‖Ḃs
p,q

:=

⎧⎨
⎩
( ∫

G
( ‖f (xy)−f (x)‖Lp

|y|s )q dy
|y|Q

) 1
q if q < ∞,

supy�=0
‖f (xy)−f (x)‖Lp

|y|s if q = ∞.

Note that Bs
p,q can also be defined as the completion of S(G) with respect to

‖ · ‖Lp + ‖ · ‖Ḃp,q
s

.

3 Besov Spaces via Fractional Heat Kernel

In this section we will provide a characterization of Besov spaces using the frac-
tional heat kernel. Throughout this section we fix α ∈ (0, 1). We first collect some
properties of the function hα defined in (2.19) by

hα(t, y) =
∫ ∞

0
h(τt

1
α , y)f1,α(τ) dτ.
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Proposition 3.1. Given α ∈ (0, 1), the function hα has the following proper-

ties:

(1) hα ∈ C∞(Ĝ \ {(0, 0)}),
(2) hα(λ2αt, δλ(x)) = λ−Qhα(t, x) for every x ∈ G and t, λ > 0,
(3) hα(t, x) = 0 for every t < 0 and

∫
G

hα(t, x) dx = 1 for every t > 0,

(4) hα(t, x) = hα(t, x−1) for every t > 0 and x ∈ G.

Proof. (1), (2) and (4) are trivial consequences of Theorem 2.9 (1), (2) and (4)
respectively. Property (3) follows from Theorem 2.9 (3) by observing that for t > 0
we have

(3.1)
∫
G

hα(t, x) dx =
∫
G

∫ ∞

0
h(τt

1
α , x)f1,α(τ) dτdx =

∫ ∞

0
f1,α(τ) dτ = 1,

where the last equality is [48, Proposition 3, Chapter IX]. �
In what follows, given f ∈ Lp(G) we will use the notation

(3.2)
u(t, x) := (hα ∗ f )(t, x) =

∫
G

hα(t, y)f (y
−1x) dy

=
∫
G

hα(t, xy
−1)f (y) dy.

Recall that n is the topological dimension of G.

Proposition 3.2. Let k ∈ N and β ∈ Nn. Then hα(t, x) satisfies for t > 0
and x �= 0: ∣∣∣ ∂k

∂tk
Dβhα(t, x)

∣∣∣ �
⎧⎨
⎩

|x|−(Q+|β|+2αk) if |x|2α ≥ t,

t−
Q+|β|+2αk

2α if |x|2α ≤ t.

Further, for 1 ≤ p ≤ r ≤ ∞ and δ = Q(1/p − 1/r), we have for all t > 0

∥∥∥ ∂k

∂tk
Dβu(t, x)

∥∥∥
Lr
� t−

|β|+2αk+δ
2α ‖f‖Lp .

Proof. We start with the pointwise estimates for k = 0 and β = 0. By
Proposition 3.1(2) we have

hα(r
2αt, δr(x)) = r−Qhα(t, x).

If |x|2α ≥ t, we have

hα(t, x) = |x|−Qhα(t|x|−2α, δ 1
|x|

(x)) ≤ |x|−Q sup
|y|=1

0<t0≤1

hα(t0, y).
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Hence to complete, it suffices to prove that

sup
|y|=1

0<t0≤1

hα(t0, y) < ∞.

Indeed, from the expression of hα, Theorem 2.9, the boundedness of h(t, y) on
the set |y| = 1 and the fact that f1,α(τ) is continuous and integrable in τ [48,
Proposition 3, Chapter IX] we have that

|hα(t0, y)| ≤
∫ ∞

0
|h(τt

1
α

0 , y)|f1,α(τ) dτ �
∫ ∞

0
f1,α(τ) dτ <∞.

On the other hand, if |x|2α ≤ t, then we have

hα(t, x) = hα(t, δt 1
2α
δ
t−

1
2α

(x)) ≤ t−
Q
2α sup

0<|y|≤1
hα(1, y).

The thesis follows if we prove that sup0<|y|≤1 hα(1, y) < ∞. Using again the
expression of hα and the fact that h(τ, y) is uniformly bounded if τ ≥ 1, we have

|hα(1, y)| ≤
∫ 1

0
|h(τ, y)|f1,α(τ) dτ +

∫ ∞

1
|h(τ, y)|f1,α(τ) dτ

�
∫ 1

0
τ−

Q
2 e− |y|2

cτ f1,α(τ) dτ + 1.

By (2.16), it holds that ∫ ∞

0
e−λaft,α(λ)dλ = e−taα .

Therefore, ft,α is the density of an α-stable subordinator. Now from [10, eq. 14],
we have for t > 0 and λ > 0,

ft,α(λ) � tλ−1−αe−tλ−α
.

Hence, ∫ 1

0
τ−

Q
2 e− |y|2

cτ f1,α(τ) dτ �
∫ 1

0
τ−( Q

2 +1+α)e− 1
τα dτ <∞

and we conclude as before. This provides us with the following estimate:

hα(t, y) � max
(
t−

Q
2α ,

1
|y|Q

)
.

The proof of the pointwise estimates of the derivatives follows from the formula

∂k

∂tk
Dβhα(r

2αt, δr(x)) = r−(Q+|β|+2kα) ∂
k

∂tk
Dβhα(t, x)
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and Theorem 2.9(6). Let us move to the Lp estimates. Using Young’s inequalities,
since u(t, x) = (hα ∗ f )(t, x), we have that

∥∥∥ ∂k

∂tk
Dβu(t, x)

∥∥∥
Lp

≤
∥∥∥ ∂k

∂tk
Dβhα(t, ·)

∥∥∥
L1

‖f‖Lp .

The conclusion follows observing that

(3.3)

∫
G

∣∣∣ ∂k

∂tk
Dβhα(t, x)

∣∣∣dx

=
∫

|x|<t
1
2α

∣∣∣ ∂k

∂tk
Dβhα(t, x)

∣∣∣dx +
∫

|x|≥t
1
2α

∣∣∣ ∂k

∂tk
Dβhα(t, x)

∣∣∣ dx

�
∫

|x|<t
1
2α

t−
Q+|β|+2αk

2α dx +
∫

|x|≥t
1
2α

|x|−(Q+|β|+2αk) dx

� t−
|β|+2αk

2α + CQ

∫ ∞

t
1
2α

rQ−1r−(Q+|β|+2αk) dr

� t−
|β|+2αk

2α .

If q is chosen such that 1/r = 1/p + 1/q − 1 ≥ 0, then by Young’s inequality

∥∥∥ ∂k

∂tk
Dβu(t, x)

∥∥∥
Lr

≤
∥∥∥ ∂k

∂tk
Dβhα(t, ·)

∥∥∥
Lq

‖f‖Lp

� t−
|β|+2αk+Q(1−1/q)

2α ‖f‖Lp

� t−
|β|+2αk+δ

2α ‖f‖Lp . �

We recall the following useful lemma [39]:

Lemma 3.3. Let (S1, μ1) and (S2, μ2) be σ-finite measure spaces. Fix a

μ1 × μ2-measurable function K for which there exists C > 0 such that
(1) |K(x, y)| ≤ C for μ1 × μ2 a.e. (x, y) ∈ S1 × S2,

(2)
∫
S1

|K(x, y)|dμ1(x) ≤ C for μ2 a.e. y ∈ S2,
(3)

∫
S2

|K(x, y)|dμ2(y) ≤ C for μ1 a.e. x ∈ S1.

Then the integral operator defined by T(f ) =
∫
S2

K(x, y)f (y) dμ2(y) is bounded from
Lp(S2, μ2) to Lp(S1, μ1) for 1 ≤ p ≤ ∞.

Let 0 < s < 1, 1 ≤ p ≤ ∞, 1 ≤ q < ∞ and recall the function u defined in
(3.2). We consider the following semi-norm on Besov spaces:

‖f‖s,p,q =
(∫ ∞

0

(
t1− s

2

∥∥∥∂u
∂t

(t, ·)
∥∥∥

Lp

)q dt
t

) 1
q

.

We can now prove our characterization of Besov spaces using the fractional heat
kernel. The following result will be crucial later.
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Theorem 3.4. Let 0 < s < 1, 0 < α < 1, 1 ≤ p ≤ ∞ and 1 ≤ q < ∞. Then

for any f ∈ Lp(G) we have
‖f‖s,p,q ≈ ‖f‖Ḃαsp,q

.

Proof. We will show the equivalence of these two seminorms for f ∈ S(G)
and the result will follow then by density. By Proposition 3.1(3),

∫
G

∂hα
∂t dx = 0,

therefore by (3.2) and Proposition 3.1(4)

∂u
∂t

(t, x) =
∫
G

∂hα
∂t

(t, y)(f (y−1x) − f (x)) dy.

Denoting ωp(y) = ‖f (xy) − f (x)‖Lp and using Minkowski’s integral inequality, we
get

∥∥∥∂u
∂t

∥∥∥
Lp

=
(∫

G

∣∣∣∣
∫
G

∂hα
∂t

(t, y)(f (xy) − f (x)) dy

∣∣∣∣
p

dx
) 1

p

≤
∫
G

∣∣∣∂hα
∂t

(t, y)
∣∣∣ωp(y) dy.

Now using Proposition 3.2, we have

t1− s
2

∥∥∥∂u
∂t

∥∥∥
Lp

�
(

t1− s
2

∫
|y|2α≥t

|y|−(Q+2α)ωp(y) dy + t−
Q+sα
2α

∫
|y|2α≤t

ωp(y) dy
)
.

Hence,

(3.4)

(∫ ∞

0

(
t1− s

2

∥∥∥∂u
∂t

∥∥∥
Lp

)q dt
t

) 1
q

�
(∫ ∞

0

(
t1− s

2

∫
|y|2α≥t

|y|−(Q+2α)ωp(y) dy
)q dt

t

) 1
q

+
(∫ ∞

0

(
t−

Q+sα
2α

∫
|y|2α≤t

ωp(y) dy
)q dt

t

) 1
q

�
(∫ ∞

0

(∫
G

t1− s
2 |y|−2α+αsχ|y|2α≥t(y)|y|−αsωp(y)|y|−Q dy

)q dt
t

) 1
q

+
(∫ ∞

0

(∫
G

t−
Q+αs
2α |y|Q+αsχ|y|2α≤t(y)|y|−αsωp(y)|y|−Q dy

)q dt
t

) 1
q

= I1 + I2.

For the integral I1, we apply Lemma 3.3 with
• (S1, μ1) = ((0,∞), dt

t ),
• (S2, μ2) = (G, dy

|y|Q ),
• K = K1(t, y) = t1− s

2 |y|αs−2αχ|y|2α≥t,
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• p replaced by q,
• f replaced by f̃ (y) = |y|−αsωp(y).

It is not hard to verify that the assumptions of the lemma are satisfied with C = 2.
For instance, to verify Lemma 3.3(2) we need to show

∫
S1

|K(t, y)|dμ1(t) ≤ C. To
see this we compute as follows:

∫
S1

|K(t, y)|dμ1(t) =
∫ ∞

0
t1− s

2 |y|αs−2αχ|y|2α≥t
dt
t

= |y|αs−2α
∫ |y|2α

0
t−

s
2 dt

=
1

1 − s
2

|y|αs−2α|y|2α(1− s
2 )

=
1

1 − s
2

.

To see f̃ ∈ Lq(S2, μ2) we notice that for |y| > 1, ωp(y) ≤ 2‖f‖Lp and hence

|f̃ (y)|q � 1
|y|qαs ∈ L1(|y| > 1, μ2).

Now for |y| < 1, since f ∈ S(G) we have ωp(y) � |y|‖∇Gf‖Lp . Thus

|f̃ (y)|q � |y|q(1−αs) ∈ L1(|y| < 1, μ2).

Applying Lemma 3.3 with these parameters leads to the estimate:

I1 �
(∫

G

ωp(y)q

|y|Q+qsα
dy

) 1
q

.(3.5)

Similarly, in order to bound I2, we use Lemma 3.3 with the same measure spaces,
the same function f̃ , and

K = K2(t, y) = t−
Q+αs

2s |y|Q+αsχ|y|2α≤t.

Once again this yields

I2 �
( ∫

G

ωp(y)q

|y|Q+qsα
dy

) 1
q
.(3.6)

Combining (3.5) and (3.6) we get

(3.7)
‖f‖s,p,q =

(∫ ∞

0

(
t1− s

2

∥∥∥∂u
∂t

∥∥∥
Lp

)q dt
t

) 1
q

�
(∫

G

ωp(y)q

|y|Q+qsα
dy

) 1
q

= ‖f‖Ḃαsp,q
.
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On the other hand, we have

f (xy) − f (x) = lim
ε→0

∫ t

ε

(
− ∂

∂r
u(r, xy) +

∂

∂r
u(r, x)

)
dr + u(t, xy) − u(t, x).

Hence

ωp(y) ≤ 2
∫ t

0

∥∥∥ ∂
∂r

u(r, x)
∥∥∥

Lp
dr + ‖u(t, xy) − u(t, x)‖Lp.

But we know that

‖u(t, xy) − u(t, x)‖Lp � |y|‖∇Gu(t, x)‖Lp.

By the semigroup property u(t, ·) = hα( t
2 , ·) ∗ u( t

2 , ·) [48] and Proposition 3.2, we
get for any i = 1, . . . ,m1:

(3.8)
∥∥∥ ∂
∂t

Xiu(t, ·)
∥∥∥

Lp
�

∥∥∥Xihα
( t

2
, ·
)∥∥∥

L1

∥∥∥ ∂
∂t

u
( t

2
, ·
)∥∥∥

Lp
� t−

1
2α

∥∥∥ ∂
∂t

u
( t
2
, ·
)∥∥∥

Lp
.

Since ‖Xiu(t, ·)‖L∞ → 0 as t → ∞, we obtain

Xiu(t, x) = −
∫ ∞

t

∂

∂r
Xiu(r, x) dr.

Thus by (3.8)

‖Xiu(t, ·)‖Lp �
∫ ∞

t
r− 1

2α

∥∥∥ ∂
∂r

u
( r

2
, ·
)∥∥∥

Lp
dr

�
∫ ∞

t
2

r− 1
2α

∥∥∥ ∂
∂r

u(r, ·)
∥∥∥

Lp
dr.

Therefore,

ωp(y) �
∫ t

0

∥∥∥ ∂
∂r

u(r, x)
∥∥∥

Lp
dr + |y|

∫ ∞

t/2
r− 1

2α

∥∥∥ ∂
∂r

u(r, x)
∥∥∥

Lp
dr.

So, if one takes t = |y|2α, we have that

‖f‖Ḃαsp,q
=
(∫

G

(|y|−αsωp(y))
q|y|−Q dy

) 1
q

�
(∫

G

(∫ |y|2α

0
|y|−αs

∥∥∥ ∂
∂t

u(t, x)
∥∥∥

Lp
dt
)q

|y|−Q dy
) 1

q

+
(∫

G

(∫ ∞

|y|2α/2
|y|1−αst

−1
2α

∥∥∥ ∂
∂t

u(t, x)
∥∥∥

Lp
dt
)q

|y|−Q dy
) 1

q

=: I1 + I2

�
( ∫ ∞

0

(
t1− s

2

∥∥∥ ∂
∂t

u(t, x)
∥∥∥

Lp

)q dt
t

) 1
q

= ‖f‖s,p,q.
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Here we used Lemma 3.3 to get the last inequality. Indeed, we take

f̃ (t) = t1− s
2

∥∥∥ ∂
∂t

u(t, x)
∥∥∥

Lp
,

(S1, μ1) = ((0,∞), dt
t ) and (S2, μ2) = (G, dy

|y|Q ). For I1, we consider the kernel

K1(t, y) = |y|−αst s
2χt<|y|2α ,

and for I2 we consider the kernel

K2(t, y) = t
s
2 − 1

2α |y|1−αsχt>|y|α/2.

This completes the proof. �

4 Besov spaces via fractional poisson kernel

In this section we characterize Besov spaces Bs
p,q(G) using the fractional Poisson

kernel. Recall [22, eq. 26] that for any 0 < α < 1 the fractional Poisson kernel
can be written as

pα(t, x) = Cαt
2α

∫ ∞

0
r−(1+α)e− t2

4r h(r, x) dr,

where Cα = (4α�(α))−1. From now on, we will let δ̃ denote the Dirac mass.

Proposition 4.1. Let n ∈ N and β ∈ N
n. Then

|Dβpα(t, x)| �
⎧⎨
⎩

|x|−(Q+|β|) if |x| ≥ t,

t−(Q+|β|) if |x| ≤ t.

Proof. Using Theorem 2.9(2) it is easy to see that

pα(λt, δλ(x)) = λ−Qpα(t, x) for every t > 0, x ∈ G and λ > 0.

Therefore, if t ≤ |x| we get

pα(t, x) = |x|−Qpα
( t
|x| , δ 1

|x|
(x)

)
≤ |x|−Q sup

0<t0≤1
|y|=1

pα(t0, y).

Hence to estimate |pα(t, x)| for |x| ≥ t it is enough to show that

sup
0<t0≤1
|y|=1

pα(t0, y) < ∞.
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Indeed, from the expression of pα and Theorem 2.9 (5) we have that

|pα(t0, y)| � t2α0

∫ ∞

0
r−(1+α)e− t20

4r h(r, y) dr

� t2α0

(∫ 1

0
r−(1+α)e− t20

4r dr +
∫ ∞

1
r−(1+α)e− t20

4r r− Q
2 dr

)

� I + II.

The integral II can be easily bounded, indeed we have

II �
∫ ∞

1
r−(1+α+ Q

2 ) dr <∞.

For the integral I we have, by the change of variable s = r
t20
,

I �
∫ 1

t20

0
s−(1+α)e− 1

4s ds �
∫ ∞

0
s−(1+α)e− 1

4s ds < ∞.

It follows that if t ≤ |x|, then pα(t, x) � |x|−Q. Similarly, for |x| ≤ t, we get

pα(t, x) = t−Qpα(1, δ 1
t
(x)) ≤ t−Q sup

|y|≤1
pα(1, y).

Therefore, the estimate follows, if one shows sup|y|≤1 pα(1, y) < ∞. Using [43,
Theorem 4] we can estimate

pα(1, y) �
∫ |y|2

0
r−(1+α)e− 1

4r |y|−Q dr +
∫ ∞

|y|2
r−(1+α)e− 1

4r r− Q
2 dr

= I + II.

By the strong decay of the exponential term, we have that

II �
∫ ∞

0
r−(1+α+ Q

2 )e− 1
4r dr < ∞.

In order to bound I, one can assume that |y| is small or else the bound is obvious.
For any N ∈ N, there exists C = C(N) > 0 such that for |y| sufficiently small we
have

e− 1
4r ≤ CrN for all r ∈ (0, |y|2).

Hence if we pick N > 1
2Q + α, then

I � |y|−Q
∫ |y|2

0
r−(1+α−N) dr � |y|−(Q+2(α−N)).

This gives the desired result, leading to pα(t, x) � t−Q.
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Finally, from the homogeneity of h we have

Dβpα(rt, δr(x)) = r−(Q+|β|)Dβpα(t, x).

The bounds then follow as in Proposition 3.2. �
If one wants to consider also derivatives in t, the bound becomes a bit more

involved. We adopt the following notation: f �k,n g if ∂i
tD
βf � ∂i

tD
βg for all i ≤ k

and |β| ≤ n.

Lemma 4.2. For all n, k ∈ N, t ∈ (0,∞) and x ∈ G we have

pα(t, x) �k,n
t2α

(t2 + |x|2) Q+2α
2

.

Proof. Wewill write the proof for ∂tpα; for higher derivatives the proof follows
the same strategy. From the formula defining pα we have that

(4.1)
∂tpα(t, x) � t2α−1

∫ ∞

0
r−(1+α)e− t2

4r h(r, x) dr + t2α+1
∫ ∞

0
r−(2+α)e− t2

4r h(r, x) dr

= I + II.

Let us focus on I. Using the estimate h(r, x) � r− Q
2 e− |x|2

cr and a substitution of
the form s = r

|x|2 , we have

(t2 + |x|2) Q+2α
2 I � |x|2α+QI � t2α−1

∫ ∞

0
s−(1+α)e

− t2

4|x|2s s− Q
2 e− 1

cs ds,

for t < |x|. This last integral is uniformly bounded by
∫ ∞
0 s−(1+α+ Q

2 )e− 1
cs ds, which

is finite since the integrand at infinity behaves like s−(1+α+ Q
2 ) and at zero it vanishes

at infinite order. Therefore,

I � t2α−1

(t2 + |x|2) Q+2α
2

.

Using the same method, we see that the second integral satisfies

II � t2α−1

(t2 + |x|2) Q+2α
2

.

Let t > |x|. From the homogeneity of h, we have

∂k
t pα(rt, δrx) = r−(Q+k)∂k

t pα(t, x).

Therefore using exactly the same procedure as in the proof of Proposition 4.1, we
get

∂tpα(t, x) �
1

tQ+1

and this proves our estimate. �
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As in the previous section, given f ∈ S(G) we will denote

(4.2) u(t, x) = (pα ∗ f )(t, x) =
∫
G

pα(t, y)f (y
−1x) dy =

∫
G

pα(t, xy
−1)f (y) dy

For the reverse inequality in Theorem 4.6 we need a non-degeneracy condition,
that is a Calderon-type formula. In the Euclidean setting one can make use of the
Fourier transform, but in a more abstract setting such as ours we need a different
tool. We took inspiration from [28] where a characterization of Besov spaces using
the Littlewood–Paley approach is proved. Since we are dealing with continuous
versions of the decomposition rather than the classical discrete one, we adopt the
following notation. Given ψ ∈ L1(G), we denote by ψt the function

ψt(x) = t−Qψ(δ 1
t
(x)) for all x ∈ G and t > 0.

Lemma 4.3. There exists ψ ∈ L1(G) such that
∫
G
ψ = 0 and

(4.3)
∫ ∞

0
tψt ∗ ∂tpα(t) dt

t
= δ̃ in S′(G).

Remark 4.4. Equation (4.3) is always to be interpreted to mean

lim
ε→0,A→∞

∫ A

ε
tψt ∗ ∂tpα(t) dt

t
= δ̃ in S′(G).(4.4)

More precisely, let KA,ε =
∫ A
ε tψt ∗ ∂tpα(t) dt

t ∈ S′(G), in the sense that

〈KA,ε, f 〉S′ =
∫
G

KA,ε(y)f (y) dy.

The convergence KA,ε → δ̃ in S′(G) means that 〈KA,ε, f 〉S′ → 〈δ̃, f 〉S′ = f (0) for
all f ∈ S(G). Now, if we set TA,ε = KA,ε ∗ f , then by definition of convolution of
tempered distributions, we have for f̃x(y) = f (xy−1) that

TA,ε(x) = 〈KA,ε, f̃x〉S′,

for all x ∈ G. Thus, by the convergence KA,ε → δ̃ we have

TA,ε(x) → f (x),

for all f ∈ S(G) and all x ∈ G.

Proof of Lemma 4.3:. Let us denote by {Eλ} the spectral resolution of −�b

in L2(G). Let φ ∈ C2−α([0,∞)) be as in [22, Proposition 4.1]. By [22, Theorem
4.4], for any u ∈ L2(G) and t > 0 we have

v(·, t) =
∫ ∞

0
φ(θt2αλα) dE(λ)u = u ∗ pα(·, t)
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where θ = (2α)−2α. Moreover, by [22, Proof of Theorem 4.4], the following
formula holds:

φ(θt2αλα) = 2−(α+1)cαλ
α/2tαθ1/2

∫ ∞

0
τ−(α+1)e−τ√λte−

√
λt

4τ dτ = Hα(
√
λt).

Here cα > 0 (for the precise expression see [22, Proposition 4.1]) and
Hα : [0,∞) → R denotes the continuous function defined as

Hα(s) = 2−(α+1)cαθ
1/2sα

∫ ∞

0
τ−(α+1)e−τse− s

4τ dτ.

Therefore,

(4.5) u ∗ t∂tpα(·, t) =
∫ ∞

0
H̃α(t

√
λ) dE(λ)u

where H̃α(s) = sH′
α(s).

Now we want to find a continuous function G : [0,∞) → R such that∫ ∞

0
H̃α(t

√
λ)G(t

√
λ)

dt
t

= 1,

which is equivalent to ∫ ∞

0
H̃α(s)G(s)

ds
s

= 1.

Since H̃α(s) is continuous and not equal to the zero function, there exists an interval
I = [ a

2, 2b] with a > 0, where |H̃α(s)| > 0 for all s ∈ I. Let η be a smooth function
supported in [ a

2, 2b], equals 1 on [a, b] and such that 0 ≤ η(s) ≤ 1 in I. For all
s ∈ I we define

G1(s) = η(s)
s

H̃α(s)
.

Therefore, ∫ ∞

0
H̃α(s)G1(s)

ds
s

=
∫ 2b

a/2
η(s) ds.

Hence it suffices to take
G(s) =

G1(s)∫ 2b
a/2 η(t) dt

.

Define Ĝ : [0,∞) → R by Ĝ(λ) = G(
√
λ). Since G has compact support, then

using the results of Section 2.3, there exists KĜ ∈ L2(G) such that for all u ∈ S(G)

Ĝ(−�b)u = u ∗ KĜ.

For every t > 0 we define Ĝt(λ) = G(t
√
λ), from (2.11) we get

KĜt (x) = t−QKĜ(δ 1
t
(x)).
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To conclude the proof it suffices to take ψ(x) = KĜ(x) which gives ψt(x) = KĜt (x).
Indeed, by (4.5), for all u ∈ L2(G)∫ A

ε
u ∗ t∂tpα(·, t) dt

t
=
∫ A

ε

∫ ∞

0
H̃α(t

√
λ) dE(λ)u

dt
t
.(4.6)

Taking u = f ∗ψt we get

u = Ĝt((−�b))f =
∫ ∞

0
G(t

√
λ) dE(λ)f.

Therefore, (4.6) implies∫ A

ε
tψt ∗ ∂tpα(t) ∗ f

dt
t

=
∫ A

ε

∫ ∞

0
H̃α(t

√
λ)G(t

√
λ) dE(λ)f

dt
t

=
∫ ∞

0

∫ A

ε
H̃α(t

√
λ)G(t

√
λ)

dt
t

dE(λ)f.

Since,
∫ A
ε H̃α(t

√
λ)G(t

√
λ) dt

t → 1 as A → ∞ and ε → 0, for all λ > 0, we
have that

lim
A→∞,ε→0

∫ A

ε
tψt ∗ ∂tpα(t) ∗ f

dt
t

=
∫ ∞

0
dE(λ)f = f.

Here the first equality follows from the fact that, for the spectral measure dE,
one has ∫

f (λ)g(λ) dE(λ) =
∫

f (λ) dE(λ)
∫

g(λ) dE(λ)

for all bounded Borel functions f and g. The second equality follows from Fubini’s
theorem. One way to see this is to localize at given functions f and g, that is, in
the form 〈∫ b

a

∫ ∞

0
G(t, λ) dE(λ)f, g

〉
L2

dt =
∫ b

a

∫ ∞

0
G(t, λ) dμf,g(λ) dt

and then use the classical Fubini theorem for the measures dμf,g and dt since
now the measures are real valued, not operator valued. The last convergence
statement follows again from the fact that if fn converges pointwise to f , then the
corresponding operators converge in the weak ∗-topology, that is〈∫

fn(λ) dE(λ)u, v
〉

L2

→
〈∫

f (λ) dE(λ)u, v
〉

L2

for all u, v ∈ L2.
Finally, by [19, Theorem 1, Lemma 6], we have that ‖ψ‖L1 is finite. Moreover,

notice that G(s) = s2G2(s), where

G2(s) =
η(s)

sH̃α(s)
∫ 2b
a/2 η(t) dt

.
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Notice that G2 is well defined and smooth since it is supported away from 0. Setting
Ĝ2(λ) = G2(

√
λ), we have that

Ĝ(−�b) = −�bĜ2(−�b).

In particular, we have that
KĜ = −�bKĜ2

.

Therefore, ∫
G

ψ(x) dx =
∫
G

−�bKĜ2
(x) dx = 0. �

Remark 4.5. Notice that a similar construction can be also done for
tr(−�b)

r
2 pα for r ∈ [0, 2]. Namely, there for r ∈ [0, 1], there exists ψ ∈ L1(G),

with
∫
G
ψ = 0 and

∫ ∞
0 tψt ∗ tr(−�b)rpα(t) dt

t = δ̃. Indeed the spectral multiplier
corresponding to tr(−�b)

r
2 pα can be written as (

√
λt)rH(

√
λt). Hence one needs

to find G such that ∫ ∞

0
srH(s)G(s)

ds
s

= 1.

But then, using the same idea as before, we can pick

G1(s) = η(s)
s1−r

H(s)
.

Another important remark is that if ψ is chosen as in the proof of Lemma 4.3, then
−�b(ψ) ∈ L1. In particular, by real interpolation, we have

‖∇Gψ‖L1 � ‖ψ‖ 1
2

L1‖ψ‖ 1
2

S1
2
� ‖ −�bψ‖L1 + ‖ψ‖L1.

Hence ∇Gψ ∈ L1(G).

Theorem 4.6. Let f ∈ S(G) and u be as in (4.2). Then for s ∈ (0, 1) we have

(∫ ∞

0
(t1−s‖∇Gu(t, x)‖Lp)q

dt
t

) 1
q ≈ ‖f‖Ḃs

p,q
.

Also, for s < 2α < 2,

(∫ ∞

0

(
t1−s

∥∥∥ ∂
∂t

u(t, x)
∥∥∥

Lp

)q dt
t

) 1
q ≈ ‖f‖Ḃs

p,q

and for s ∈ (0, 2),

(∫ ∞

0
(t2−s‖(−�b)u(t, x)‖Lp)q

dt
t

) 1
q ≈ ‖f‖Ḃs

p,q
.
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Proof. We begin with the proof of the first part. In this case, one inequality
is easy to prove but the opposite one needs another ingredient provided by Lemma
4.3. First, notice that the fact h(t, x) = h(t,−x) implies∫

G

Xih(r, x) dx = 0 for all i = 1, . . . ,m and all r ∈ (0,∞).

Hence using the explicit form of pα yields∫
G

∇Gpα(t, x) dx = 0.

Next we have
∇Gu(t, x) =

∫
G

∇Gpα(t, y)(f (xy) − f (x)) dy.

Therefore,

‖∇Gu‖Lp ≤
∫
G

|∇Gpα(t, y)|ωp(y) dy,

where ωp(y) = ‖f (xy) − f (x)‖Lp . Thus, by Proposition 4.1

t1−s‖∇Gu‖Lp � t1−s
∫

|y|≥t
|y|−(Q+1)ωp(y) dy +

∫
|y|<t

t−(Q+s)ωp(y) dy.

Again here, we use the same trick as in (3.4). Indeed, for the first integral we
take K(t, y) = χ|y|>t

t1−s

|y|1−s on the spaces ((0,+∞), dt
t ) and (G, dy

|y|Q ) and f (y) = ωp(y)
|y|s .

For the second integral, we take K(t, y) = χ|y|<tt−(Q+s)|y|Q+s with the same measure
spaces and function f . We then have

(∫ ∞

0
(t1−s‖∇Gu(t, x)‖Lp)q

dt
t

) 1
q

� ‖f‖Ḃs
p,q
.

This proves the first inequality.
For the reverse inequality, we first use Remark 4.5 to see that

f (x) =
∫ ∞

0
(ψt ∗ t(−�b)

1
2 pα ∗ f )(x)

dt
t
.

Hence, using Young’s inequality for convolutions in the first inequality,

(4.7)

‖f (xy) − f (x)‖Lp
x

�
∫ ∞

0
t‖ψt(xy) −ψt(x)‖L1

x
‖(−�b)

1
2 u‖Lp

dt
t

�
∫ ∞

0
χ|y|≥tt‖ψ‖L1‖(−�b)

1
2 u‖Lp

dt
t

+
∫ ∞

0
χ|y|≤t‖t∇Gψt‖L1 |y|‖(−�b)

1
2 u‖Lp

dt
t

�
∫ ∞

0
χ|y|≥tt‖ψ‖L1‖(−�b)

1
2 u‖Lp

dt
t

+
∫ ∞

0
χ|y|≤t‖∇Gψ‖L1 |y|‖(−�b)

1
2 u‖Lp

dt
t
.
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Since ψ and ∇Gψ ∈ L1(G) (see Remark 4.5), we have

ωp(y) �
∫ ∞

0
χ|y|≥t t‖(−�b)

1
2 u‖Lp

dt
t

+
∫ ∞

0
χ|y|≤t|y|‖(−�b)

1
2 u‖Lp

dt
t

�
∫ ∞

0
χ|y|≥t t‖∇Gu‖Lp

dt
t

+
∫ ∞

0
χ|y|≤t|y|‖∇Gu‖Lp

dt
t
.

Here, we used in the second inequality the continuity of the Riesz transform from
Lp to Lp which gives ‖(−�b)

1
2 u‖Lp � ‖∇Gu‖Lp (see [9]). Hence,

(4.8)

(∫
G

(ωp(y)
|y|s

)q dy
|y|Q

) 1
q

�
(∫

G

(∫ ∞

0

t
|y|sχt≤|y|‖∇Gu‖Lp

dt
t

)q dy
|y|Q

) 1
q

+
(∫

G

(∫ ∞

0

|y|
|y|sχt≥|y|‖∇Gu‖Lp

dt
t

)q dy
|y|Q

) 1
q

�
(∫ ∞

0
tq‖∇Gu‖q

Lp

(∫
|y|≥t

1
|y|Q+s

dy
)q dt

t

) 1
q

+
(∫ ∞

0
‖∇Gu‖q

Lp

(∫
|y|≤t

1
|y|Q−(1−s)

dy
)q dt

t

) 1
q

�
(∫ ∞

0
(t1−s‖∇Gu‖Lp)q

dt
t

) 1
q

using the same trick of Lemma 3.3. Let us now move to the second equivalence.
We will prove the direct inequality and the reverse one works exactly as in the
previous setting. The main difference in this second equivalence is the fact that∫
G
∂tpα(t, y) dy �= 0 so we need to do a few more manipulations in order to have a

similar setting as before. First recall from [22] that pα satisfies the equation

∂t(t
1−2α∂tpα) + t1−2α�bpα = 0 for t > 0.

Hence, we have ∫
G

∂t(t
1−2α∂tpα)(t, y) dy = 0.

Thus,

(4.9)

t1−2α∂tu(t, x) =
∫
G

t1−2α∂tpα(t, y)f (xy) dy

= −
∫
G

∫ ∞

t
∂r(r

1−2α∂rpα)(r, y)(f (xy) − f (x)) dr dy

=
∫
G

∫ ∞

t
r1−2α�bpα(r, y)(f (xy) − f (x)) dr dy.
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It follows then that

(4.10)

t1−2α‖∂tu‖Lp �
∫
G

∫ ∞

t
r1−2α|�bpα(r, y)|ωp(y) dr dy

�
∫

|y|<t

∫ ∞

t
r1−2α|�bpα(r, y)|ωp(y) dr dy

+
∫

|y|>t

∫ ∞

t
r1−2α|�bpα(r, y)|ωp(y) dr dy

= I + II.

We first estimate I. Using the fact that |y| < t, we have from Lemma 4.2, that

r1−2α|�bpα(r, y)| � 1
rQ+1+2α

.

Thus,

I �
∫

|y|<t

1
tQ+2αωp(y) dy.

In particular,

∫ ∞

0
[t2α−sI]q

dt
t

�
∫ ∞

0

[ ∫
G

χ|y|<t
1

tQ+s
ωp(y) dy

]q dt
t
.

We use then Lemma 3.3 with the same measure spaces as before, for the kernel
K(t, y) = χ|y|<t

|y|Q+s

tQ+s and f (y) = ωp(y)
|y|s . This leads to

(∫ ∞

0
[t2α−sI]q

dt
t

) 1
q

� ‖f‖Ḃs
p,q
.

We move now to the second term. Indeed, we have

(4.11)
II �

∫
|y|>t

∫ |y|

0
r1−2α|�bpα(r, y)|ωp(y) dr dy

+
∫

|y|>t

∫ ∞

|y|
r1−2α|�bpα(r, y)|ωp(y) dr dy.

Now using again Lemma 4.2, we have that, for r < |y|,

r1−2α|�bpα(r, y)| � r1−2α

|y|Q+2
.

Therefore, since α < 1, we have

∫ |y|

0
r1−2α|�bpα(r, y)| dr � 1

|y|Q+2α
.
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Similarly, when r > |y|, using Lemma 4.2, we have

(4.12)

∫ ∞

|y|
r1−2α|�bpα(r, y)| dr �

∫ ∞

|y|
r1−2α r2α

(r2 + |y|2) Q+2α+2
2

dr

�
∫ ∞

|y|
1

rQ+2α+1
dr

� 1
|y|Q+2α

.

Thus, we have

t2α−sII �
∫
G

χ|y|>t
t2α−s

|y|Q+2αωp(y) dy.

We use now Lemma 3.3 with the same measure spaces as before and p = q, for
K(t, y) = χ|y|>t

t2α−s

|y|2α−s and f (y) = ωp(y)
|y|s . Keeping in mind that the assumptions of

Lemma 3.3 hold when 2α > s, we have
(∫ ∞

0
[t2α−sII]q

dt
t

) 1
q

� ‖f‖Ḃs
p,q
.

Therefore, we conclude that
(∫ ∞

0
[t1−s‖∂tu‖Lp]q

dt
t

) 1
q

� ‖f‖Ḃs
p,q
.

The proof of the last equivalence, is exactly similar to the first one, hence we omit
it. �

5 Square function and BMO bounds

5.1 Square function bounds. The following square function bounds us-
ing the Sobolev norm will be useful later in the applications.

Theorem 5.1. Let f ∈ S(G) and 1 < p <∞. Then:
For −Q < s < 1 we have

∥∥∥∥
(∫ ∞

0
[t1−s|∇Gu(t, x)|]2 dt

t

) 1
2
∥∥∥∥

Lp

� ‖(−�b)
s
2 f‖Lp .

For s < 2α we have∥∥∥∥
(∫ ∞

0
[t1−s| ∂

∂t
u(t, x)|]2 dt

t

) 1
2
∥∥∥∥

Lp

� ‖(−�b)
s
2 f‖Lp .

For −Q < s < 2 we have
∥∥∥∥
(∫ ∞

0
[t2−s|∇2

Gu(t, x)|]2 dt
t

) 1
2
∥∥∥∥

Lp

� ‖(−�b)
s
2 f‖Lp .
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In order to proceed with the proof of Theorem 5.1, we first need to recall a few
important properties of square functions. For further details, we refer the reader to
[26, 45].

Let φ ∈ S(G) be such that
∫
G
φ dx = 0 and φt(x) = t−Qφ(δ 1

t
x). Then we define

the square functions

(5.1) Sβφf (x) :=
(∫ ∞

0

∫
|x−1y|<βt

|f ∗ φt(y)|2t−Q−1 dy dt
) 1

2

where β > 0 and

(5.2) gφf (x) :=
(∫ ∞

0
|f ∗ φt|2 dt

t

) 1
2

.

In [26], the authors proved the Lp boundedness of these operators. More precisely,
they show that for 0 < p <∞, gφ and Sβφ are bounded from the Hardy space Hp(G)

to Lp(G). From now on, we will write Sφ for Sβφ. In order to use this result, we need
to relax the assumption φ ∈ S(G). We will need these bounds for some specific
functions φ which are not in S(G).

Proposition 5.2. Let s > −1 and φ(x) = ∇G(−�b)
s
2 pα(1, x) which implies

the formula φt(x) = t1+s∇G(−�b)
s
2 pα(t, x). Then the function Kb

a defined by

Kb
a (x) =

∫ b

a
φt ∗ φt(x)

dt
t

converges as a → 0 and b → ∞ to a function K in S′(G) that is smooth on G \ {0}
and homogeneous of degree −Q around zero.

Proof. The formula φt(x) = t1+s∇G(−�b)
s
2 pα(t, x) follows from the homo-

geneity of pα. Next notice that pα ∗pα(t, x) = t−Qpα ∗pα(1, x
t ). Indeed, this follows

from the property that ft ∗ gt = (f ∗ g)t. Here the convolution is only on the x

variable, while the scaling is in the t variable. Now notice that

Kb
a (x) =

∫ b

a
t1+2s(−�b)

s+1(pα ∗ pα)(t, x) dt.

But then one can see, using Proposition 4.1 and an interpolation inequality of the
form

‖(−�b)
1+su‖L∞(�) � ‖�bu‖θL∞(�)‖(−�b)

2u‖1−θ
L∞(�)

with � = {R ≤ |x| ≤ 2R}, that

|(−�b)
s+1pα ∗ pα| �

⎧⎨
⎩

|x|−(Q+2s+2) if t ≤ |x|,
t−(Q+2s+2) if |x| ≤ t.
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Therefore, for |x| > 0,

t1+2s(−�b)
s+1pα ∗ pα(t, x) = O(t1+2s)

near zero and t1+2s(−�b)s+1pα ∗ pα(t, x) = O(t−Q−1) near ∞. Thus, as long as
1 + 2s > −1, the integral converges absolutely to a smooth function on G \ {0}.
Moreover, if we let K = lima→0;b→∞ Kb

a , we have that K(rx) = r−QK(x) which
finishes the proof. �

One also has the same result for

(5.3) φt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t1+s∇G(−�b)
s
2 pα if s > −1,

t1+s(−�b)
s
2 ∂
∂t pα if s > −2α,

t2+s(−�)
s
2 (−�b)pα if s > −2,

t2+s∇G(−�b)
s
2 ∂
∂t pα if s > −1 − 2α.

Recall the square functions gφ and S1
φ = Sφ defined in (5.1) and (5.2).

Proposition 5.3. Let φt be defined as in (5.3). Then Sφ and gφ are bounded

from Lp to Lp, for 1 < p <∞.

Proof. We will follow here the proof in [26] for the case φ ∈ S(G) and we will
present it for φt as in Proposition 5.2 since the proof is similar for the remaining
functions in (5.3). Indeed, one first proves the L2 bound, that is

(5.4)
‖gφf‖2

L2 =
∫
G

∫ ∞

0
f ∗ φt f ∗ φt

dt
t

=
∫
G

f ∗ K(x)f (x) dx ≤ ‖K ∗ f‖L2‖f‖L2 .

But, from Proposition 3.2, K is a kernel of type (0, 2), thus we have that

‖K ∗ f‖L2 � ‖f‖L2 .

Therefore
‖gφ‖L2 � ‖f‖L2 .

We define the space X = L2((0,∞), dt
t ) and the X-valued distribution � defined

for f ∈ S(G) by

〈�, f 〉(t) =
∫

G
f (x)φt(x) dx.

We claim that this distribution is well defined. Indeed, we have

|〈�, f 〉(t)| ≤ 1
tQ

‖φ‖L∞‖f‖L1 .
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Next, we notice that since
∫
φ = 0 we have that

|〈�, f 〉(t)| ≤
∫
G

|f (tx) − f (0)|φ(x) dx.

Since f ∈ S(G) we see that

t �→
∣∣∣ 〈�, f 〉(t)

t

∣∣∣
is bounded near zero, therefore 〈�, f 〉 ∈ L2((0,∞), dt

t ). Hence, gφf (x) is well
defined and

gφf (x) = ‖f ∗�‖X.

And so far we have proved that gφ is bounded from L2 to L2
X. Moreover, if we look

at �(x)(t) = φt(x) we have that

‖Dβ�(x)‖2
X =

∫ ∞

0
|t1+sDβ+1(−�b)

s
2 pα(t, x)|2 dt

t

�
∫ |x|

0
t1+2s|x|−2(Q+β+s+1) dt +

∫ ∞

|x|
t1+2st−2(Q+β+1+s) dt

� |x|−2(Q+β).

Hence � is an X-valued kernel of type (0, r) for al r > 0 which leads to the
boundedness of f ∗� from Lp to Lp

X for 1 < p < ∞. Thus

‖gφf‖Lp � ‖f‖Lp .

A similar bound holds for the operator Sβφ. �

Proof of Theorem 5.1. The proof of Theorem 5.1 now is a straightforward
consequence of Proposition 5.3. First, we write

t1−s∇Gu(t, x) = t1−s∇Gpα ∗ f = t1−s∇G(−�b)
− s

2 pα ∗ (−�b)
s
2 f.

Applying Proposition 5.3, we have the desired result for s < 1. �

5.2 BMO bounds. Next we provide some equivalent characterizations of
the BMO norm that will be useful in the coming applications. First, given a
function f ∈ L1

loc(G) and B a ball in G, we define

mB =
1

|B|
∫

B
f (x) dx.

Let B be the collection of all the balls in G. A function f is said to be in BMO if

[f ]BMO = sup
B∈B

1
|B|

∫
B
|f (x) − mB| dx < ∞.
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We recall next the characterization of the BMO norm using the Carleson measure.
If we denote

T(Br(x0)) = {(t, x) ∈ R
+ × G : |x−1

0 x| < r − t},
then we have the following proposition [45].

Proposition 5.4. Let f ∈ S(G) and φ ∈ S(G) be such that
∫
G
φ(x) dx = 0.

Then

sup
B∈B

1
|B|

∫
T(B)

|f ∗ φt|2 dt dx
t

� [f ]2BMO.

If we assume the existence of ψ ∈ S(G), with
∫
G
ψ dx = 0 and

∫ ∞
0 φt ∗ ψt

dt
t = δ̃0,

then

sup
B∈B

(
1

|B|
∫

T(B)
|f ∗ φt|2 dt dx

t

) 1
2 ≈ [f ]BMO.

From the equivalence stated above, one gets the following proposition.

Proposition 5.5. Let f ∈ S(G). Then for φt defined in (5.3), we have

[f ]BMO ≈ sup
B∈B

(
1

|B|
∫

T(B)
|f ∗ φt|2 dt

t

) 1
2

.

From the previous proposition we get in particular

[f ]BMO ≈ sup
B∈B

(
1

|B|
∫

T(B)
|t∇Gu(t, x)|2 dt

t

) 1
2

≈ sup
B∈B

(
1

|B|
∫

T(B)
|t2�Gu(t, x)|2 dt

t

) 1
2

≈ sup
B∈B

(
1

|B|
∫

T(B)

∣∣∣t ∂
∂t

u(t, x)
∣∣∣2 dt

t

) 1
2

,

and in the fractional setting

(5.5)
BMO ≈ sup

B∈B

(
1

|B|
∫

T(B)
|ts(−�b)

s
2 u(t, x)|2 dt

t

) 1
2

≈ sup
B∈B

(
1

|B|
∫

T(B)
|t1+s∇G(−�b)

s
2 u(t, x)|2 dt

t

) 1
2

.

We finish now by recalling the following duality result between the Carleson
measure and the square function [45].
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Lemma 5.6. Let G,F : R+ × G → R be two functions. Then∫
G

∫ ∞

0
F(t, x)G(t, x)

dt
t

dx

� sup
B∈B

(
1

|B|
∫

T(B)
|F(t, y)|2 dt

t
dy

) 1
2
∫
G

(∫
|y−1x|<t

|G(t, y)|2 dt
tQ+1

dy
) 1

2

dx,

whenever the right-hand side is finite.

Corollary 5.7. Let G : R+ × G → R such that∫
G

(∫
|y−1x|<t

|G(t, y)|2 dt
tQ+1

dy
) 1

2

dx < ∞.

Then∫
G

∫ ∞

0

(
t
∂

∂t
u(t, x)

)
G(t, x)

dt
t

dx � [f ]BMO

∫
G

(∫
|y−1x|<t

|G(t, y)|2 dt
tQ+1 dy

) 1
2

dx.

This inequality still holds if we replace t ∂
∂t u(t, x) by any one of:

• t∇Gu(t, x),
• t2�bu(t, x),
• ts(−�b)

s
2 u(t, x),

• t1+s∇̃(−�b)
s
2 u(t, x).

6 Applications

Before starting this section we recall some relevant maximal function bounds.
Given a function φ : G → R satisfying the growth condition

|φ(x)| � 1
(1 + |x|)λ ,

for a given λ > 0, one can define the two maximal functions

(M0
φf )(x) = sup

t>0
(f ∗ φt)(x)

and
(Mφf )(x) = sup{|f ∗ φt| : |x−1y| < t, 0 < t < ∞}.

With these definitions, one has the following theorem [26].

Theorem 6.1. For λ > Q, M0
φ and Mφ are bounded from Lp(G) to Lp(G)

for p > 1 and from L1(G) to weak L1(G).

In this section, if f ∈ S(G) we will write Fα = f ∗ pα. We also use the
notation ∇̃ = ∇G ⊕ ∂

∂t , defined by ∇̃u = (∇Gu, ∂u
∂t ). In what follows, we will

write M and M0 instead of Mφ and M0
φ, since the function φ will be different

depending on the situation.
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6.1 Integral inequalities.

Theorem 6.2. Let f, g, h ∈ S(G) and 1 < p1, p2, p3 < ∞ such that

1
p1

+
1
p2

+
1
p3

= 1.

Then:

(1) For s1, s2 ∈ (0,min{1, 2α}) and Q > s3 ≥ 0,
∫
R+×G

t2−s1−s2+s3 |∇̃Fα||∇̃Gα||Hα| dx dt
t

� ‖(−�b)
s1
2 f‖Lp1 ‖(−�b)

s2
2 g‖Lp2 ‖Is3h‖Lp3 .

(2) For s1 ∈ (0,min{1, 2α}) and Q > s3, s2 ≥ 0,
∫
R+×G

t2−s1+s2+s3 |∇̃Fα||∇̃Gα||Hα| dx dt
t

� ‖(−�b)
s1
2 f‖Lp1 ‖Is2g‖Lp2‖Is3h‖Lp3 .

(3) For s1 ∈ (0,min{1 + 2α, 2}), s2 ∈ (0,min{1, 2α}) and 0 ≤ s3 < Q,
∫
R+×G

t3−s1+s2+s3 |∇G∇̃Fα||∇̃Gα||Hα| dx dt
t

� ‖(−�b)
s1
2 f‖Lp1 ‖(−�b)

s2
2 g‖Lp2‖Is3h‖Lp3 .

Here Iα is the fractional integration of order α, that is Iαu = (−�b)
α
2 u.

Proof. We will present the proof of (1). The proofs of (2) and (3) follow the
same idea. We will apply the result of Theorem 6.1 for φt = ts(−�b)

s
2 pα. Indeed,

we have that

(−�b)
s
2 pα(1, x) �

1
(1 + |x|)Q+s

.

Hence, we have by definition of M0
φ that

sup
t>0

ts|Hα| = sup
t>0

|ts(−�b)
s
2 pα ∗ Isf | = M0

φ(Isf ).

Hence,
∫
G

∫ ∞

0
t2−s1−s2+s3 |∇̃Fα||∇̃Gα||Hα| dx dt

t

�
∫
G

M0
φ(Is3h)

∫ ∞

0
t1−s1 |∇̃Fα|t1−s2 |∇̃Gα| dt

t
dx.

The result then follows from Hölder’s inequality and Theorem 5.1. �
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Theorem 6.3. Let f, g, h ∈ S(G), and 1
p + 1

q = 1 with 1 < p < ∞. Then for

s ∈ (0, 1),
∫
R+×G

t2+2(1−s)|∇̃Hα||∇G∇̃Fα||∇̃Gα| dx dt
t

� [h]BMO‖(−�b)
s
2 f‖Lp‖(−�b)

s
2 g‖Lq,

and for s < 2α we have
∫
R+×G

t2−s|∇̃Hα|
∣∣∣ ∂
∂t

Fα
∣∣∣|Gα| dx dt

t
� [h]BMO‖(−�b)

s
2 f‖Lp‖g‖Lq.

Proof. Let us again start by proving the first claim. Indeed, using Corollary
5.7 we have that

(6.1)

∫
R+×G

t2+2(1−s)|∇̃Hα||∇G∇̃Fα||∇̃Gα| dx dt
t

� [h]BMO

∫
G

(∫
|y−1x|<t

(t1+2(1−s)|∇G∇̃Fα||∇̃Gα|)2 dt
tQ+1

) 1
2

dx

� [h]BMO

∫
G

M((−�b)
s
2 f )(x)S1

φ((−�b)
s
2 g)(x) dx

� [h]BMO‖(−�b)
s
2 f‖Lp‖(−�b)

s
2 g‖Lq .

A similar proof holds for the second claim. �

6.2 Three-term commutator. Let u, v ∈ S(G). Then we define the
three-term commutator Hα(u, v) by

Hα(u, v) := (−�b)
α(uv) − u(−�b)

αv − v(−�b)
αu.

This commutator was studied in the Euclidean setting in [35, 44] and in the case of
Carnot groups in [36]. We want also to point out that one can obtain easy bounds
for this commutator in Besov spaces. Indeed

Proposition 6.4. Let α ∈ (0, 1), assume that 1
r = 1

p1
+ 1

p2
and 1

q1
+ 1

q2
= 1. We

let s1, s2 > 0 so that s1 + s2 = 2α. Then we have

‖Hα(u, v)‖Lr � ‖u‖Ḃ
s1
p1,q1

‖v‖Ḃ
s2
p2,q2
.

Proof. The proof follows directly from the pointwise expression of the com-
mutator. Using

(−�b)
αu(x) =

∫
G

(u(x) − u(y))R̃α(xy
−1) dy,
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we can write, as in [36],

Hα(u, v)(x) =
∫
G

[u(xy) − u(x)][v(xy)− v(x)]R̃α(y) dy.

Since R̃α ≈ |y|−Q−2α, we have for 1
r = 1

p1
+ 1

p2
, 1 = 1

q1
+ 1

q2
and 2α = s1 + s2:

‖Hα(u, v)‖Lr �
(∫

G

(∫
G

[u(xy) − u(x)][v(xy) − v(x)]
|y|2α

dy
|y|Q

)r

dx
) 1

r

�
∫
G

(∫
G

( [u(xy) − u(x)][v(xy) − v(x)]
|y|2α

)r
dx

) 1
r dy
|y|Q

�
∫
G

1
|y|2α ‖u(xy) − u(x)‖Lp1‖v(xy) − v(x)‖Lp2

dy
|y|Q

� ‖u‖Ḃ
s1
p1,q1

‖v‖Ḃ
s2
p2,q2
. �

The case of Lp spaces is a little bit more difficult and technical as in [36]. We
will see here that for some range of α, we can obtain a relatively simple proof of
some of these bounds and in fact extend the range of the estimates proved in [36]
to include a BMO-type estimate.

6.2.1 Lp-type estimates.

Theorem 6.5. Let α ∈ (0, 1
2 ]. Then one has

‖Hα(u, v)‖Lp � ‖(−�b)
αu‖Lp[v ]BMO.

Moreover, for α = α1 + α2 with α1, α2 ∈ (0. 12 ) and 1
p = 1

p1
+ 1

p2
, one has

‖Hα(u, v)‖Lp � ‖(−�b)
α1u‖Lp1‖(−�b)

α1v‖Lp2 .

Proof. We will start first by proving the second claim. We let h ∈ Lp′
, and we

propose to estimate
∫
G
Hα(u, v)h dx. Using the fact that

lim
t→0

(
t1−2α ∂

∂t
Uα(t, x)

)
= cα(−�b)

αu(x)

and that
∂

∂t

(
t1−2α ∂

∂t
Uα

)
= −t1−2α�bUα

we have that∣∣∣∣
∫
G

Hα(u, v)h dx

∣∣∣∣ ≈
∣∣∣∣
∫
G

∫ ∞

0
∂t[t

1−2α(UαVα∂tHα − UαHα∂tVα − VαHα∂tU)] dtdx

∣∣∣∣
=
∣∣∣∣
∫
G×R+

t1−2α[2∂tUα∂tVα + ∇GVα∇GUα]Hα dx dt

∣∣∣∣
�

∫
G×R+

t2−2α|∇̃Uα||∇̃Vα||Hα| dx dt
t
.
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Now using Theorem 6.2, we have that∣∣∣∣
∫
G

Hα(u, v)h dx

∣∣∣∣ � ‖(−�b)
α1u‖Lp1 ‖(−�b)

α2v‖Lp2‖h‖Lp′ .

Notice that this also provides the proof of the first claim for α < 1
2 using Theo-

rem 6.3. It remains thus to treat the case α = 1
2 . In this case, we have after another

integration by parts∣∣∣∣
∫
G

Hα(u, v)h dx

∣∣∣∣ ≈
∣∣∣∣
∫
G×R+

[2∂tUα∂tVα + ∇GVα∇GUα]Hα dx dt

∣∣∣∣
=

∣∣∣∣
∫
G×R+

t
∂

∂t
[(2∂tUα∂tVα + ∇GVα∇GUα)Hα] dxdt

∣∣∣∣
�

∫
G×R+

t[|∇̃Uα||∇̃Vα||∇̃Hα| + |∇̃Vα||∇̃∇GUα||Hα|] dx dt.

Next, writing t2 = tt0t for the first term and t2 = tt2−2( 1
2 ) we get∣∣∣∣

∫
G

Hα(u, v)h dx

∣∣∣∣ � [v ]BMO‖h‖Lp′ ‖(−�b)
1
2 u‖Lp. �

6.2.2 Rivière–Da Lio three-term commutator.

Theorem 6.6. If 2α ≤ 1 we have

‖(−�b)
αHα(u, v)‖H1 � ‖(−�b)

αu‖Lp‖(−�b)
αu‖Lp′ .

Proof. Here we will use the duality between H1 and BMO (see [26]).
Case 2α < 1. Let h ∈ S(G) and g = (−�b)αh. Then we have∣∣∣∣

∫
G

Hα(u, v)g dx

∣∣∣∣ =
∣∣∣∣
∫
G

uv(−�b)
αg − ug(−�b)

αv − vg(−�b)
αu dx

∣∣∣∣
=

∣∣∣∣
∫
G×R+

∂t(t
1−2α(UαVα∂tGα − UαGα∂tVα − VαGα∂tUα)) dt dx

∣∣∣∣
�

∫
G×R+

t1−2α|∇GUα||∇GVα||Gα| dt dx

+

∣∣∣∣
∫
G×R+

t1−2α[∂tUα∂tVαGα] dt dx

∣∣∣∣.
We write the first term as t1−2α|∇GUα|t1−2α|∇GVα|t2α|Gα| 1

t to get, using Theo-
rem 6.3, an estimate of the form∫

G×R+
t1−2α|∇GUα||∇GVα||Gα| dt dx � [g]BMO‖(−�b)

αu‖Lp‖(−�b)
αv‖Lq.
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The second term is a little more involved as in the proof of Theorem 6.5: an extra
integration by parts is needed. Indeed,∫

G×R

t1−2α[∂tUα∂tVαGα] =
1
2α

∫
G×R+

t2α∂t(t
1−2α∂tUαt

1−2α∂tVαGα) dt dx

=
−1
2α

∫
G×R+

t2−2α(�bUα∂tVαGα +�bVαUαGα dt dx

+
1
2α

∫
G×R+

t2−2α∂tUα∂tVα∂tGα dt dx

=
−1
2α

∫
G×R+

t2−2α(�bUα∂tVαGα +�bVαUαGα dt dx

+
1
8α

∫
G×R+

t4α∂t(t
1−2α∂tUαt

1−2α∂tVαt
1−2α∂tGα) dxdt.

Now the first two terms can be easily bounded by the desired quantity. It remains
to bound the last one:∫

G×R+
t4α∂t(t

1−2α∂tUαt
1−2α∂tVαt

1−2α∂tGα) dxdt

= −
∫
G×R+

t3−2α
[
(�bUα∂tVα +�bVα∂tUα)∂tGα

− (∂t∇GUα∂tVα + ∂t∇GVα∂tUα)∇GGα

]
dt dx.

Again all the terms here have the right form of Theorems 6.2 and 6.3 and they
provide the desired bound.

Case 2α = 1. In this case, we have∣∣∣∣
∫
G

H 1
2
(u, v)g dx

∣∣∣∣
=
∣∣∣∣
∫
G×R+

∂t(U 1
2
V 1

2
(−�b)H 1

2
− ∂tU 1

2
V 1

2
∂tH 1

2
− ∂tV 1

2
U 1

2
∂tH 1

2
) dt dx

∣∣∣∣
=

∣∣∣∣
∫
G×R+

t∂t((U 1
2
V 1

2
)(−�b)H 1

2
− (U 1

2
V 1

2
)tt∂tH 1

2
) dt dx

∣∣∣∣
=
∣∣∣∣
∫
G×R+

t∂t(�̃b(U 1
2
V 1

2
)∂tH 1

2
) dt dx

∣∣∣∣
= 2

∣∣∣∣
∫
G×R+

t∂t(∇̃U 1
2
∇̃V 1

2
∂tH 1

2
) dt dx

∣∣∣∣
�

∫
G×R+

t|∂t(∇̃U 1
2
∇̃V 1

2
)||∂tH 1

2
)| dt dx

+
∫
G×R+

t|∇G(∇̃U 1
2
∇̃V 1

2
)||∇GH 1

2
| dt dx,

where here �̃b = �b + ∂tt and we used the harmonicity of the extension. Notice
here that we can finish the proof as in the previous case. �
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Note that one can also capture the (Lp,Lq) → Lr-type estimates in [36] by
slightly modifying the proof and using the Lp estimates for the Riesz potential.

6.3 Chanillo-type commutator. We recall here the commutator estimate
proved by Chanillo [18]:

‖[Is, v ]u‖Lp � ‖u‖Lq[v ]BMO.

Notice that

[Is, v ]u = Is(uv) − vIs(u).

Therefore, if we set u = (−�b)
s
2 a, we have

∫
G

(−�b)
s
2 ([Is, v ]u)h =

∫
G

v [(−�b)
s
2 a − a(−�b)

s
2 h] dx.

So we propose to estimate an integral of the form
∫
G

v [(−�b)
s
2 u − u(−�b)

s
2 h] dx.

Theorem 6.7. For 1
p + 1

r − s
Q = 1, we have

∣∣∣∣
∫
G

v [(−�b)
s
2 u − u(−�b)

s
2 h] dx

∣∣∣∣ � [v ]BMO‖(−�b)
s
2 u‖Lp‖‖(−�b)

s
2 h‖Lr .

Proof. Again, we use the same trick, that is we write
∣∣∣∣
∫
G

v [h(−�b)
s
2 u − u(−�b)

s
2 h] dx

∣∣∣∣
≈

∣∣∣∣
∫
G×R+

∂t[t
1−s(∂tU s

2
H s

2
− ∂tH s

2
U s

2
)V s

2
] dt dx

∣∣∣∣
�

∣∣∣∣
∫
G×R+

t1−s(∇GU s
2
H s

2
− ∇GU s

2
H s

2
)∇GV s

2
dt dx

∣∣∣∣
+

∣∣∣∣
∫
G×R+

t1−s(∂tU s
2
H s

2
− ∂tU s

2
H s

2
)∂tV s

2
dt dx

∣∣∣∣.
Using Theorem 6.3, we have that

∣∣∣∣
∫
G×R+

t1−s(∇GU s
2
H s

2
− ∇GU s

2
H s

2
)∇GV s

2
dt dx

∣∣∣∣
� [v ]BMO‖(−�b)

s
2 u‖Lp‖h‖Lq

� [v ]BMO‖(−�b)
s
2 u‖Lp‖(−�b)

s
2 h‖Lr
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where the second inequality follows from the Sobolev embeddings with 1
r = 1

q + s
Q .

The second term, on the other hand, cannot be bounded directly since we are in
the case s = 2α. That is why we perform another integration by parts:

(6.2)

∫
G×R+

t1−s(∂tU s
2
H s

2
− ∂tU s

2
H s

2
)∂tV s

2
dt dx

=
1
s

∫
G×R+

ts∂t(t
1−s(∂fU s

2
H s

2
− U s

2
∂tH s

2
)t1−s∂tV s

2
) dt dx

=
1
s

∫
G×R+

−t2−s(�bU s
2
H s

2
− U s

2
�bH s

2
)∂tV s

2

− t2−s(∂tU s
2
H s

2
− U s

2
∂tH s

2
)�bV s

2
dt dx

= −
∫
G×R+

t2−s(�bU s
2
H s

2
− U s

2
�bH s

2
)∂tV s

2

+ t2−s(∂t∇GU s
2
H s

2
+ ∂tU s

2
∇GH s

2
)∇GV s

2

− t2−s(∇GU s
2
∂tH s

2
− U s

2
∂t∇GH s

2
)∇GV s

2
dt dx.

The first term can be bounded easily as in Theorem 6.6. For the last two terms, we
also have the right bound since s < 1 + 2α = 1 + s. �
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