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Introduction 

Because of the increasing concern over climate change, and proposed solutions to 

mitigate it, environmental policy and programs have begun to use terrestrial carbon sinks 

that have the potential to sequester Greenhouse Gases (GHG) that would otherwise be 

remain in the earth’s atmosphere. In GHG reduction schemes, such as the cap-and trade 

programs in Northeast United States, California, and Europe, a prominent mechanism for 

sequestering GHG emissions (and quantifying this sequestration) is through the use of 

terrestrial carbon sinks to generate Carbon offset credits (Bushnell, 2011; Wilman & 

Mahendrarajah, 2002). Carbon offset credits are defined as a “a reduction in GHG 

emissions (or an increase in carbon sequestration) by one individual or organization that 

can compensate for (or offset) emissions made by another individual or organization” 

(McKinley et al., 2011). A regulated entity within a cap-and-trade program that may not be 

able to reduce its emissions regulated quota it is allotted, as determined by the number of 

emissions allowances it is given, may purchase carbon offset credits from a non-regulated 

sector that will supplant the additional emission reductions necessary. Carbon offset 

credits can be created in many different forms, one of the most common being the 

biological sequestration of CO2 in land use, land use change, and forest management 

(Ramseur, 2008).  

However, there are potential concerns about the design of such biological sequestration 

offset policies and protocols. Carbon offsets are specifically designed to manage forests 

for climate change mitigation purposes, which is to sequester carbon to mitigate the 

effects of increased anthropogenic GHG emissions into the atmosphere. However, 

mitigation management objectives may be in conflict with adaptation management 
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objectives, such as the promotion of structural and compositional complexity, that would 

allow ecosystems to respond and adapt to uncertain future climate conditions. For 

example, managing to promote a fast-growing, monoculture forest structure may be the 

most effective management practice to increase Carbon sequestration, but may have 

adverse impacts on natural processes and ecological adaptation abilities. Understanding 

how mitigation and adaptation management strategies conflict will assist in the 

development of policies and protocols that balance both objectives, or at least minimize 

adverse impacts between objectives (D’Amato, Bradford, Fraver, & Palik, 2011).  In 

another example, the incentive to maximize the number of trees in a given plot of land to 

sequester the largest amount of carbon may have adverse effects on potential landform 

and soil quality aspects of the area, as well as may affect natural disturbance regime 

processes (Galatowitsch, 2009; Madlener, Robledo, Muys, & Freja, 2006; Sims, Aadland, 

Finnoff, & Powell, 2013). Are offset programs designed in a way that will provide 

environmental co-benefits and ecological restorations that reflect the current state of 

scientific understanding? There is concern that public policy for carbon offsets has 

surpassed the scientific knowledge needed to support and ensure that not only these 

mechanisms create true carbon sequestration, but that they are also done in an 

environmentally sustainable way (Galatowitsch, 2009). Therefore, it is important to 

examine offset policies and protocols to understand if they promote ecologically 

sustainable practices. Defining ecologically sustainable forest management, and the 

concepts pertinent to it, is a first important step in understanding how offset policies relate 

to it. Then examining potential forest offset management strategies will further assist in 

understating how offset management practices are related to ecological sustainability. 
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Ecological Sustainability of Forest Ecosystems 

Defining ecological sustainability, specifically within forest ecosystems, can be difficult. It 

should be noted that ecological sustainability in forest systems managed for economic 

purposes can be sharply distinguished from the concept of sustained yield, which focuses 

on the ability to maintain a certain level of resources to ensure continued economic 

viability of a forest. Ecological sustainability on the other hand can be used as a guiding 

principle to manage ecosystems that are economically exploited by minimizing the 

adverse impacts on a system’s ecological integrity and not appreciably compromising the 

ecosystem’s health (Callicott & Mumford, 1997). Ecological integrity refers to the historical 

species composition and structure of the biotic communities within that ecosystem 

(Angermeier & Karr, 1994). Ecosystem health on the other hand refers to the normal 

ecological processes and functions within an ecosystem, such as primary production, 

water purification, nutrient cycling, and soil stabilization (Callicott & Mumford, 1997). In 

order to achieve an ecologically sustainable future it will be necessary to use a 

combination of conserved, restored, and invented ecosystems using the breadth of 

scientific knowledge which may compromise aspects of ecological integrity, but not an 

ecosystem’s health (Palmer et al., 2005). Sustainability of an ecosystem will generally 

mean placing a limit on its economic production potential and management practices, and 

should consider higher ecological system levels than the level of the area of interest 

(Fresco & Kroonenberg, 1992). Certain concepts are important to bear in mind when 

attempting to understand if a policy promotes ecologically sustainable management 

practices. Fonseca et al. (2009) outline six concepts for ecologically friendly management 

in Atlantic Forest ecosystems that can be applicable to many ecosystem types: 
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statistical margin of error, was the Loblolly Pine, and these projects are located in the 

Southeast of the US. 

Contiguity/Fragmentation 

Within the Protocol itself there is no requirement that the land within the project area must 

be contiguous. There are restrictions dealing with contiguity of harvest areas that do limit 

fragmentation within that regard. However, because there are very few explicit 

requirements about contiguity within the Protocol, contiguity and fragmentation, and 

concepts related to them, are mentioned in a variety of ways if they are mentioned at all. 

In many of the project documents, maps were included of the project areas. 14 of the 

project design documents that have maps showed project areas that are made up of 

multiple non-contiguous land tracts (not considering roads and rivers that break up a 

continuous tract). Many of the tracts themselves seem to be fragmented in their own right 

because of natural elevation changes and shifting ecosystems that may be non-forest. 

Appendix D contains examples of different project area maps. 

Most of the contiguity constraints for tracts within the projects tend to be based on legal 

requirements that were already in place prior to the offset project. For example, many of 

the projects located in California had contiguity constraints placed on them because they 

contain Northern Spotted Owl habitat, which is legally protected under certain habitat 

protection laws. There are similar constraints placed on project areas that contain Red 

Cockaded Woodpecker. For projects located in Maine, The Maine Forest Service Rule 

requires certain level of contiguous stocking land, and is a legal constraint placed on the 

project.  However, all these requirements are in place prior to the offset project, and 

therefore the offset project does not change contiguity/fragmentation standards. 
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An interesting trend that was noted in multiple projects located in California was the 

increase of marijuana production as a pressure of increased fragmentation of forest 

stands in the project area, and therefore a possible baseline outcome of the project area if 

not for the IFM Carbon offset project. 

One project’s document, the Downeast Lakes Land Trust, does explicitly mention the 

creation of wildlife corridors, and creating small stands of similar forest type, that are 

aggregated to facilitate the creation of larger, contiguous canopy layers. However, it does 

not mention if this action is a result of the offset project, or was a prior project area 

management objective. 

Disturbance 

The Protocol does state that “areas of significant disturbance may be excluded from 

sustainable management and age class distribution tests”, which does allow managers to 

let effects from disturbance regimes continue without Protocol regulations changing 

natural processes. Nearly every project design document mentions disturbance in the 

context of the Reversal Risk Ratings policy as described in the Protocol. 24 projects used 

the default percentage values for wildfire, disease/insect outbreak, and other catastrophic 

reversal risk ratings, which are 4%, 3%, and 3% respectively. Only three project 

documents’ explicitly mention performing any fire disturbance intensity mitigation 

practices, such as prescribed burns, or fuel treatments, which allow for a smaller reversal 

risk rating, and therefore, fewer credits submitted to the reversal buffer account. The Rips 

Redwood LLC project has a lower fire reversal risk rating because it was able to prove 

that the ecosystem of the project area was less vulnerable to reversal from fire than the 

average assumed risk. Salvage logging, the practice of logging after a disturbance is 
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permitted in multiple projects, which may have effects on post-disturbance processes. The 

project documents remain undescriptive about what these operations exactly entail. 

Environmental Services 

Other environmental services, such as water quality, soil quality, and animal habitat, are 

generally not explicitly addressed in the Protocol itself. However, it does mandate that all 

other legal constraints on the project area must be adhered to. Because of this, project 

documents mention abiding by certain environmental services constraints because of 

previous laws and regulations placed on the project area. Commonly mentioned 

regulations include the Clean Water Act, the Endangered Species Act, the California 

Porter-Cologne Water Quality Control Act, and other state specific forest practice rules 

depending on the state the project is located in. Habitat rules pertaining to regulations 

surrounding the Northern Spotted Owl in projects located in California and the Red 

Cockaded Woodpecker in the Southeast of the US are other legal constraints that were 

placed on project areas prior to the implementation of the offset project and must be 

followed if the projects are to continue.  

Certain easements and sustainable forestry certifications, specifically the Forest 

Stewardship Council certification, require that silvicultural activities provide critical and 

diverse wildlife habitat. Certain easements placed on the land specifically require 

management objectives that improve water quality, soil quality, and wildlife habitat. Since 

some forest certification schemes and conservation easements were used to satisfy the 

NFM criteria, and were specifically placed upon the project area to satisfy this criterion, 

the Protocol does encourage other ecosystem services.  
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In a number of project documents, it is noted that state “Best Silviculture Management 

Practices” regarding water and soil quality are followed on the site. However, it is not a 

legal necessity for the project operator to follow these practices. Because of this, details of 

practices are generally not included within the project documents themselves, and no 

system of accountability for these practices is in place. 

Lying Dead Wood 

21 project documents explicitly state that the project areas meet the requirements of the 

dead wood per acre requirements within the NFM criteria of the Protocol. Eight projects 

explicitly state the project area does not meet the requirements for dead wood outlined in 

the Protocol. A common way to increase standing and lying dead wood within the project 

areas that do not meet the requirement is the passive management policy to not remove 

any of it during harvesting activities, and simply let it accumulate over time. It is also 

mentioned in multiple project documents that tree tops will be left after harvest to assist in 

increasing dead wood. However, besides this, there is very little mention of any active 

approaches to increasing or maintaining dead wood. Projects must demonstrate that they 

maintain the required amount of dead wood per acre for the life of the project. 

Native Species 

All documents for the 31 projects surveyed state that they met the Native Species 

requirement of the NCM criteria at the implementation date of the project. Percentage of 

Native Species are stated as composing between 97.7% to 100% of the tree species in 

the project area. Though this Protocol did not instigate immediate changes to forest 

species composition in the project area, it does hold these project areas under an 

obligation to ensure that it maintain the required number of native species.  
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Thinning 

There was a wide variety of thinning treatments described within the project documents 

that may be used within the project areas. In six of the documents the term “Commercial 

Thinning” is mentioned as a possible thinning technique used. It is defined in the 

documents as “The removal of trees in a young-growth stand to maintain or increase 

average stand diameter of the residual crop trees, promote growth, and/or improve forest 

health.” These documents, as well as many others, discuss thinning techniques in how 

they will be used in conjunction with harvesting. Another common type of thinning 

mentioned in the documents in conjunction with harvesting is that of pre-commercial 

thinning. However, thinning was explicitly mentioned in only three of the project 

documents in the context of improving habitat or to assist the development of uneven-

aged forest stands. 

Discussion and Policy Suggestions 

It is apparent that the Protocol, and consequently, the project documents, consider other 

management objectives in addition to climate change mitigation objectives. The aspects of 

the NCM criteria are the most explicit portion of the Protocol that addresses the possible 

tradeoffs that may occur between climate change mitigation and forest adaptation 

management objectives. It ensures that some form of species diversity, native species 

composition, and compositional complexity is created, or at least maintained, within the 

project area. The uneven-age management requirements within the NCM criteria are an 

especially pertinent management strategy to balance both objectives, as uneven-age 

forestry practices are a way to achieve a compromise of maintaining critical stand level 
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complexity elements while still achieving Carbon sequestration goals (D’Amato et al., 

2011). 

The Protocol explicitly states that areas of significant disturbance may be removed from 

sustainable management requirements, which does allow for natural disturbance 

processes to occur without interference from forest managers. However, the Protocol 

does not have strong guidelines for managing natural disturbance regimes in balance with 

mitigation objectives. The guidelines that do pertain to natural disturbance mostly relate to 

the Reversal Risk Rating portion of the Protocol, which deals with Carbon offset banking 

and mitigating the risk posed by reversal from a disturbance. Natural disturbances are so 

central to basic ecological functions and affect the existence of certain species or 

communities that it is important to explicitly consider regimes in management goals that 

promote restoration or conservation (Baker, 1992; Nguon & Kulakowski, 2013; Swetnam, 

Allen, & Betancourt, 1999). In this sense, the guidelines for managing for natural 

disturbance in the Protocol could be stronger to ensure that Carbon sequestration 

management strategies truly incorporate natural disturbance regimes (Galatowitsch, 

2009). Also, a very small number of the reviewed projects (3) said they had implemented 

fire mitigation management strategies, which demonstrates that the Protocol’s Reversal 

Risk Rating does not generally incentivize forest managers to implement these strategies. 

Nevertheless, for the development of future projects, it would be important to include 

policies that incentivize fire mitigation practices that don’t interrupt natural disturbance 

processes or natural structures, which is not currently a part of the Protocol. It should also 

be noted that climate change may be shifting the intensity, timing, and frequency of 

natural disturbances. Of particular concern, models suggest the potential for an increase 
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in fire intensity and a 25% to 50% increase in area burned from wildfires in the US 

because of climate change (Dale et al., 2001). The program must consider the higher risk 

and uncertainty of natural disturbance events when incorporating policies related to 

natural disturbances within the program. Potential future research may involve examining 

these percentages used and if they are related to shifting disturbance regimes. 

Other environmental considerations, such as water quality, soil quality, and fauna habitat 

and population concerns are generally not explicitly stated within the Protocol, though 

other aspects of the Protocol, such as the NCM criteria, will implicitly affect these 

sustainable management considerations. However, as demonstrated within the project 

documents, other policies and laws require certain management practices that explicitly 

consider these aspects of sustainable management. It therefore may not be necessary for 

the Protocol to outline requirements for these aspects. Regardless, the Protocol does 

require that projects meet all legal requirements within the project area. Therefore, the 

Protocol requirements add another level of motivation for project operators to manage 

these areas for these environmental considerations. This assumes the legal requirements 

are based on current ecological understanding and that they directly and comprehensively 

consider other environmental benefits such as biodiversity, nutrient cycling, and 

watershed protection, which is necessary for sustainable management (McKinley et al., 

2011). Public Policy has generally outpaced ecological understanding, and the need for a 

toolset for better understanding environmental impact, such as the ability to better monitor 

soil carbon and what may affect this, is necessary for a more complete understanding of 

the outcomes of these policies (Galatowitsch, 2009).  
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Another area that may allow for improvement within the Protocol and the resulting projects 

is in the promotion of more connected landscapes which is an aspect of ecologically 

sustainable forest management noted by numerous authors (Fonseca et al., 2009; Noss, 

1993). Currently, connected landscapes within the offset program are promoted through 

previous legal constraints that projects must abide by, as well as certain age management 

connectivity requirements (CARB, 2015). As noted in the research, nearly half of the 

project areas were made up of multiple, non-contiguous tracts, which leaves room for 

improvement within the Protocol in that regard. 

As demonstrated within the project document review, though the Protocol does not create 

immediate changes in forest structure, it does require many project areas to be managed 

with sustainable management goals. Many of the project areas met the NCM 

requirements prior to their implementation. This suggests that forest areas that generally 

meet these requirements are the areas that are sought out to be developed as projects to 

ensure the lowest costs for the project as possible. However, one of the most immediate 

changes to management actions the Protocol creates is the amount of dead wood within 

project areas, as many of the projects did not satisfy these requirements, and because of 

this policy, dead wood within these areas will generally increase, which is one aspect of 

what Noss (1993) refers to as promoting old-growth conditions as an aspect of 

ecologically sustainable management. 

A majority of the projects reviewed stated that a forest certification program or 

conservation easement would be used to ensure “sustainable” harvest practices. The 

examination of the policies and protocols of these programs was outside the scope of this 

project. This places management directives under the jurisdiction of third-party actors, and 
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the review and examination of these programs is a possible next step to further 

understand if, and how, these project areas are sustainably managed. 

Millar et al. (2007) emphasizes the importance of basing decisions on sustaining 

ecological processes rather than structure and composition when managing forests for 

adaptability in an uncertain climatic future. Many of the policies within the Protocol strictly 

regulate structural and compositional aspects of project areas, and certain processes like 

nutrient and water cycles, are not explicitly addressed within the Protocol’s policies. 

Though many of the structural and compositional goals may implicitly affect these 

processes, the Protocol could be changed to focus more on maintaining ecological 

processes in order to create more ecologically sustainable forest systems. 

Conclusion 

It is apparent through this research that the Protocol and the associated reviewed IFM 

projects go beyond simply managing for the single objective of climate change mitigation 

that may lead to the exclusion of other forest management objectives, such as adaptation, 

resiliency, and sustainability (D’Amato et al., 2011). The Protocol and projects do support 

other environmental co-benefits, which is necessary for sustainable ecological restoration 

(Galatowitsch, 2009). However, there is still room for improvement within the Protocol to 

address other ecologically sustainable forest management objectives, including better 

alignment of objectives with natural disturbance regimes and the promotion of more 

connected landscapes. This research could be used to assist future development of other 

offset protocols, which may become more prevalent with the development of more GHG 

emissions cap-and-trade programs. The Protocol and IFM projects demonstrate how 
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Carbon offset programs can balance the possible conflicting objectives of climate change 

mitigation and ecologically sustainable management. Though there is room for 

improvement, the Protocol mandates that certain criteria that promote ecologically 

sustainable management are met for the project areas. Laying baseline policies in place 

ensures that managing forests for mitigation objectives does not completely eclipse the 

necessity to manage them sustainably. Other regions and countries of the world are 

discussing the development of Carbon offset programs and a review of California’s 

system can demonstrate how these mechanisms can be setup in a way that promote 

ecologically sustainable management, as well as how they can improve upon California’s 

program to incorporate ecologically sustainable management practices even more.   
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Appendix A: Project Documents Reviewed 

Project Name Document 
Name 

Project ID  Project ID Project Location 
(US State) 

Coastal Ridges LLC. Willits Woods PDD CAR661 CAFR0001 California 

Farm Cove Community Forest Carbon Project PDD CAR657 CAFR0002 Maine 

Blue Source - Francis Beidler IFM Project PDD CAR683 CAFR0030 South Carolina 

Coastal Ridges LLC. Gualala River Forest PDD CAR660 CAFR0042 California 

Finite Carbon - Potlach Moro Big Pine CE IFM PDD CAR648 CAFR0047 Arkansas 

Yurok Tribe Sustainable Forest Project PDD CAR777 CAFR0064 California 

Finite Carbon - Berry Summit PDD CAR1004 CAFR0070 California 

Brosnan Forest Carbon Project PDD CAR658 CAFR0087 South Carolina 

Shannondale Tree Farm PDD CAR780 CAFR0088 Missouri 

Rips Redwood LLC PDD CAR1015 CAFR0100 California 

Alder Stream Preserve Forest Carbon Project PDD CAR655 CAFR0105 Maine 

Howland Research Forest Carbon Project PDD CAR681 CAFR0106 Maine 

Finite Carbon - NEFF PDD CAR672 CAFR0116 New Hampshire 

Usal Redwood Forest PDD CAR730 CAFR0123 California 

Finite Carbon - Passamaquoddy Tribe IFM OPDR CAR1175 CAFR195 Maine 

Hanes Ranch OPDR ACR182 CAFR5012 California 

Round Valley Indian Tribe IFM Project OPDR ACR173 CAFR5028 California 

Finite Carbon - The Forestland Group CT 
Lakes 

OPDR ACR199 CAFR5034 New Hampshire 

Blue Source - Goodman IFM OPDR ACR202 CAFR5043 Wisconsin 

Buckeye Forest Project OPDR CAR1013 CAFR5055 California 

White Mountain Apache Tribe Forest Carbon 
Project 

OPDR ACR 211 CAFR5072 Arizona 

Trinity Timberlands University Hill IFM OPDR CAR1046 CAFR5076 California 

Finite Carbon - The Forestland Group 
Champion Property 

OPDR CAR1088 CAFR5089 New York 

Brushy Mountain OPDR CAR1095 CAFR5096 California 

Finite Carbon - MWF Brimstone IFM PDD CAR1130 CAFR5130 Tennessee 

Garcia River Forest OPDR CAR1098 CAFR5141 California 

Gabrych Ranch IFM Project Initial OPDR CAR1104 CAFR5150 California 

Brush Creek OPDR ACR200 CAFR5200 California 

Bewley Ranches OPDR ACR262 CAFR5212 California 

Virginia Highlands 1 Application 
for Listing 

CAR1032 CAFR5037 Virginia 

Glass Ranch OPDR CAR1103 CAR5149 California 

** OPDR – Offset Project Data Report 
** PDD – Project Design Document 
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Appendix B: Words and Phrases NVivo Search 

Concepts Searched Terms 

Age-Management & 
Rotation Length 

even-aged, uneven-aged, "clear cut", "seed tree", cutting, 
harvest, rotation, "cutting cycle", shelterwood, harvesting, 
"selection harvesting" 

Biodiversity/Diversity biodiversity, diversity, heterogeneity, composition 

Contiguity contiguity, corridors, connected, fragmentation, parcels 

Disturbance insect, beetle, defoliator, wildfire, fire, windthrow, disease, 
flood, disturbance, "disturbance regime", pathogen, 
drought, "natural disturbance", "Climate Change" 

Environmental 
Services 

fauna, animal, habitat, wildlife, "water quality", "soil 
quality", "ecosystem services" 

Lying Dead Wood "lying dead wood", "coarse woody debris", LDW, CWD, 
logs, snags 

Native Species "native species", "natural species", "exotic species", 
endogenous, "invasive species" 

Thinning thinning 
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Appendix C: Map of U.S. Supersections 

  



 

36 
 

Appendix D: Example Project Maps 

 

Figure 1. Hanes Ranch Project Area Map (CAFR5012), Created by NewForests: Forest Carbon Partners 
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Figure 2. Usal Redwood Forest Project Map (CAFR0123), Created by James D. Clark, North Coast Resource 
Management 
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Figure 3: MWF Brimstone Project Area Map (CAFR5130), Created by FintieCarbon 


