
Clark University
Clark Digital Commons
International Development, Community and
Environment (IDCE) Master’s Papers

5-2017

Data and Geometry; Model Building at Calthorpe
Analytics
Samuel M. Upton
Clark University, supton@clarku.edu

Follow this and additional works at: http://commons.clarku.edu/idce_masters_papers

Part of the Urban Studies and Planning Commons

This Practitioner Report is brought to you for free and open access by the Master’s Papers at Clark Digital Commons. It has been accepted for inclusion
in International Development, Community and Environment (IDCE) by an authorized administrator of Clark Digital Commons. For more
information, please contact celwell@clarku.edu.

Recommended Citation
Upton, Samuel M., "Data and Geometry; Model Building at Calthorpe Analytics" (2017). International Development, Community and
Environment (IDCE). 152.
http://commons.clarku.edu/idce_masters_papers/152

http://commons.clarku.edu?utm_source=commons.clarku.edu%2Fidce_masters_papers%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.clarku.edu/idce_masters_papers?utm_source=commons.clarku.edu%2Fidce_masters_papers%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.clarku.edu/idce_masters_papers?utm_source=commons.clarku.edu%2Fidce_masters_papers%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.clarku.edu/masters_papers?utm_source=commons.clarku.edu%2Fidce_masters_papers%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.clarku.edu/idce_masters_papers?utm_source=commons.clarku.edu%2Fidce_masters_papers%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/436?utm_source=commons.clarku.edu%2Fidce_masters_papers%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.clarku.edu/idce_masters_papers/152?utm_source=commons.clarku.edu%2Fidce_masters_papers%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:celwell@clarku.edu

 Data and Geometry; Model Building at Calthorpe Analytics

i

Data and Geometry
Model Building at Calthorpe Analytics

Samuel Upton

Degree will be conferred May 2017

A GISDE final project paper

submitted to the faculty of Clark University, Worcester, Massachusetts,

in partial fulfillment of the requirements for the degree of

Masters of Science in Geographic Information Sciences for Development and Environment

in the Department of International Development, Community, and Environment

Accepted on the recommendation of

Yelena Ogneva-Himmelberger, Project Advisor

 Data and Geometry; Model Building at Calthorpe Analytics

ii

Abstract

Data and Geometry; Model Building at Calthorpe Analytics

Samuel Upton

 This report documents my Summer 2016 internship with Calthorpe Analytics, a Berkeley CA-

based urban planning firm. Calthorpe Analytics specializes in scenario development for planning,

modeling, and plan evaluation for government and municipal clients. The primary responsibility of my

internship was model development and refinement using advanced spatial analytics working in the

Python programming language. The internship was extremely successful: it gave me a great opportunity

to strengthen my open source GIS skillset, deepen my understanding of data science, and vastly improve

my geospatial programming skillset. It also gave me a chance to apply advanced geospatial modeling

and spatial statistics in practice. The firm provided a great working environment and a very supportive

culture in which to learn and test new ideas and techniques. The following paper will expand on the

work of Calthorpe Analytics, their culture and organization, my contributions to their workflow, and

reflect on the personal and professional impact of the internship.

Yelena Ogneva-Himmelberger, Project Advisor

 Data and Geometry; Model Building at Calthorpe Analytics

iii

Academic History

Name: Samuel Upton

Baccalaureate Degree: B.A., History and Religion

Source: Oberlin College, Oberlin OH

Date: May, 2000

 Data and Geometry; Model Building at Calthorpe Analytics

iv

Dedication

I would like to dedicate this paper to my wife, without whom none of this would have been possible.

 Data and Geometry; Model Building at Calthorpe Analytics

v

Acknowledgement

A number of people had a hand in the success of my internship. I would like to thank Nick

Wilson for connecting me with Calthorpe Analytics. I would also like to thank Nick and his wife Robin for

taking me in, and for showing me the Bay area. I would like to thank Joe DiStefano for giving me a

chance to join his team, and the freedom to find my own path through his systems. I would like to thank

Erika Lew, Kelan Stoy, Koshy Thomas, and Brock Hicks for their help, teaching and enthusiasm. I would

like to thank Jamie Alessio, Alec Flec, and the whole Development team for their advice and technical

help. I would finally like to thank my professors and peers in the GISDE program, whose ongoing

teaching, support, and encouragement has given me the skillset and drive to succeed in the face of any

and all challenges.

 Data and Geometry; Model Building at Calthorpe Analytics

vi

Table of Contents

 Page

Introduction 1

Organization 2

 Mission 3

Work 4

 Spatial Analysis and Mapping 4

 Organizational Structure and Culture 5

 Strengths 5

Internship Responsibilities 7

Assessing my Internship 12

Conclusion 14

Figures 15

Sources 16

Appendix 17

 Data and Geometry; Model Building at Calthorpe Analytics

1

Introduction

My internship this past summer took me to North Berkeley, and a firm called Calthorpe

Analytics. This firm performs scenario-based growth projection and outcome modeling for

municipalities. I joined their Analytics team, a group of young engineers, planners, and data scientists

who perform client analysis and develop new methodologies to increase the value of the data products.

I made the connection with the organization through a friend and GISDE alumnus, who was a long-time

employee of Calthorpe Analytics and had created the core of their spatial analytical processes before

moving on. My work centered on Python programming, advanced spatial analytics, and data science. I

was primarily focused on the research and development aspect, in that I was not there long enough to

take on primary longitudinal responsibility for a client project. I thoroughly immersed myself in the

workplace culture, a free-wheeling intellectual environment that was extremely open to innovation,

paired with weekly bike rides and weekend adventures. My work drove my programming skill and

technical GIS toolset to a much higher plane, teaching me powerful new methods, tools, and approaches

that have become integral to my GIScience workflows.

 Data and Geometry; Model Building at Calthorpe Analytics

2

Organization

Calthorpe Analytics is an urban planning and software development company that specializes in

analyzing and modeling the long-term outcomes of policy decisions. Their particular focus is the impact

of the built environment and land-use on financial, environmental, health, and transportation outcomes.

The leadership of the organization brings tremendous experience in urban planning to bear on the

technical specificity of modeling. It is a sister firm to Calthorpe Associates, an urban design, planning and

architecture firm founded by Peter Calthorpe, a leader in sustainability and smart urbanism. The client

base is municipalities, municipal associations, national policy groups, environmental organizations and

state and national governments.

 Calthorpe Analytics has two major teams: Analytics, which performs scenario analysis for

clients, and through this process develops and improves the firm’s analytical methods and models, and

Development, a software development team which is creating a planning-specific GIS, Urban Footprint,

that incorporates the firm’s core analytic structures and models, and will deliver that functionality

directly to customers.

The firm’s three major analytical packages are Urban Footprint, a web-based planning-specific

GIS, RapidFire, a non-spatially informed Excel spreadsheet-based planning package, and the core

analytical package that informs client projects, which is a mix of spatial and non-spatial models

implemented in Python and PostgreSQL. All three packages are built in-house, or based on house-

developed models.

The basic structure of the analysis performed by Calthorpe focuses on suitability analysis to

model different future scenarios based on client-supplied policy assumptions. This creates a set of

scenarios representing different projections of the spatial distribution of growth within a municipality’s

extent. The suitability analysis looks at series of metrics, unit normalized, and weights them, creating a

 Data and Geometry; Model Building at Calthorpe Analytics

3

single 0-1 overall suitability score, with development barriers masked out. Growth is then assigned by

suitability rank until the growth has been allocated. Once the scenarios are created, the tabular results

are used, along with limited third-party transportation analysis, to run non-spatial, multi-tiered

multivariate and log models, producing a series of topic-specific outputs for a series of metrics, including

environmental, transportation, health, and economic outcomes.

Model Flow Chart:

Mission

The firm’s mission is to provide analytically rigorous future scenarios that support the goals of

sustainable urban development, healthy urban environments, expanded mass and rapid transit options,

and environmental protection.1 The analytic models that are at the core of the firm’s work emphasize

long term outcomes, highlighting the hidden costs of rapid and poorly conceived development

compared with more sustainable practices. The Analytics team goals are to provide targeted, context-

informed products to clients while constantly working to increase the accuracy and integrity of the

models, keeping Calthorpe at the forefront of the field. Towards this goal, there is a constant emphasis

on research and development projects, and keeping abreast of technical developments in urban

planning and spatial computing. The Development team’s goal is to create a technologically advanced,

 Data and Geometry; Model Building at Calthorpe Analytics

4

stable, scalable, and usable piece of software that will find a place in the planning data ecosystem2, and

well as provide a platform for routine internal analysis.

Work

 Calthorpe Analytics has worked all over the country and is expanding its international presence.

It has completed major projects in Utah, Ohio, Hawaii, Colorado, Wisconsin, Texas. In California they

helped create Vision California, the first state-wide smart growth plan, and the long-term plan for SCAG

(Southern California Association of Governments) the largest metropolitan planning organization in the

country, encompassing over 18 million residents3. The firm has worked in Mexico, and is exploring

opportunities in both India and China.

Spatial Analysis and Mapping

 Geospatial information is one of the core building blocks of the company’s products, and as such

is pervasive in the organization. Basic fluency in Geographic Information Systems (GIS) structure and

methodology, as well as strong programming skill are common at every tier of the organization. Higher

level Geographic Information Science (GISci), spatial method and algorithm development, and spatial

modeling happen with the Analytics team. During my internship the team as made up of 4 members

with advanced degrees in engineering, transportation engineering, and urban planning. The most

common GISci projects and tasks are centered on model refinement and associated variable creation.

Mapping is generally undertaken for client presentations, but on the whole cartography is a very minor

part of the workflow on the organization. The majority of GISci tasks are done outside of commercial

GIS packages. The modeling is implemented in Python spatial libraries (Fiona, Shapely, Geopandas) and

in the larger ecosystem of Python data science libraries.

 Data and Geometry; Model Building at Calthorpe Analytics

5

GIS workflow:

Organizational Structure and Culture

 As a small company Calthorpe Analytics has a very open and level organization. The co-founder,

Joe DiStefano, heads both the Planning and Software teams, and is the lead on client communication

and new client acquisition. Erika Lew is lead planner and manages the Analytics team. The rest of the

team will act as lead on various projects, from small technical tasks to longitudinal multi-year client

projects. These tasks are assigned on both availability, and on the specific technical requirements of the

job with each team member representing a specific set of strong technical/operational skills. The

Development team duplicates this overall structure. Both Calthorpe Analytics and Associates are

diverse in terms of gender, ethnicity and nationality at all organizational levels. The overall office is

informal in both dress and demeanor, with a dedicated, self-motivated group. There are daily check-in

meetings to manage work flow, weekly meetings for strategic goals, and weekly lunchtime bike rides up

into the Berkeley hills.

Strengths

 Calthorpe Analytics’ greatest strengths are its relentless focus on innovation and improvement,

and its openness to new points of view. Even the most routine structures of the analytic process are

under constant review and scrutiny. Employees are encouraged to bring their particular interests and

 Data and Geometry; Model Building at Calthorpe Analytics

6

expertise to the table and will get a hearing of their ideas, often at the weekly demonstration period

held every Friday. It is a chance for the whole team to sit down and show progress, describe interesting

new ideas, new methods, to ask for group help on problems, and to poll the group and leadership on the

feasibility/desirability of new tools. The downside of this approach is that it can be hard to keep all the

many pieces running together, keep errors out of code and data, and keep the whole team up to date

on the current state of the art. Going forward the company is switching to a more formal ‘release

version’ of its analytic package (i.e. v1.0, v1.1, v1.2), mirroring the structure of the software

development project. This would allow for more comprehensive testing and stability, as well as more

ease in reporting methods to clients.

 Data and Geometry; Model Building at Calthorpe Analytics

7

Internship Responsibilities

The core of my internship was the creation of advanced spatial analytic tools in the Python

programming language, integrating the open-source Pandas and Geopandas data science libraries. My

internship duties and responsibilities fell into several main categories: direct spatial and data analysis for

client projects, research and development of spatial methods for future projects, integrating new data

structures into existing in-house modeling software, and limited cartography for client-facing

communication. My individual projects were either direct requests from within the department for a

specific analysis or functionality, or self-directed exploration around expanding the overall quality or

accuracy of the larger modeling environment.

The first phase of my responsibilities was learning to work in a new software environment. The

Analytics department runs on Windows with Ubuntu Linux operating systems running on virtual

machines for full-scale model runs. The data is kept on several large PostgreSQL databases using the

PostGIS spatial extension. All the analysis is conducted in Python. I entered my internship with a good

Python skillset, but without much experience with large datasets or complex spatial or data analysis.

The start of my internship coincided with a new push to replace the traditional Python approach to

tabular data - nested dictionaries - with a new and more powerful data-science library Pandas (PANel

DAta, a reference to the three-dimensional data structure) and its spatial extension Geopandas. The

fundamental goal of the Pandas library development is to bring the data-structures and analytical power

of the statistical programming language R to Python. It recreates R’s basic vector/matrix scheme with its

attendant efficiencies of item-wise vector math, allowing for computational efficiency over large

datasets. The library sits on top of the NumPy library, a core toolset for Python. At the start of my time

at Calthorpe, I had more knowledge of R than my teammates and no client-specific responsibilities, so it

was agreed that I would spearhead the push to integrate the new methods. This meant a lot of reading

 Data and Geometry; Model Building at Calthorpe Analytics

8

along with a set of practical problems that allowed me to find my way in the new structures. For the rest

of internship, along with my other responsibilities, I was the resident reference for Pandas functionality,

and often contributed code-snippets of specific operations in colleague’s work. This nested naturally

with learning and exploiting the power the of spatial extension of the data structure, Geopandas, and

the still somewhat experimental network analysis toolset Pandana (Panda Network Analyst).

Geopandas utilizes the Shapely library to create and manipulate vector spatial structures and produce

Well Known Binary (WKB) format output for visualization in QGIS. It maintains a consistent projection

using either EPSG or Proj4 definitions.

To further describe my internship, I will more fully describe several projects that I worked on or

completed. The first is a script to draw out the per-unit average value of different types of structures

across four large-scale spatial regimes (city, town, village) each with three potential land development

density categories (standard, compact, urban). The script starts with multiple SQL queries to gather the

requisite information from multiple tables. These are created as Pandas data frames, the basic 2d

structure in the library, where they are joined on the unique geography id of the parcels, and duplicate

records are dropped. The early part of every client project includes extensive data ingestion and

cleaning, so I was able to assume a very high level of data integrity in my work, thus throughout my code

there are relatively few cleaning and null-value testing routines. The value data in the merged table is

then normalized by developed square footage. The table is then grouped by the two development

categories and summed by assemblage (code in appendix, example 1).

The second example is allocating input data from base geometries to a network model that

assigns all data to nodes. We needed to assign a proportion of the data in a polygon to the appropriate

node, not double count data, with a node potentially capturing data from multiple polygons. The

Pandana tool assigns data to nodes where all data from a polygon is set to the node closest to the

polygon centroid. Our end-product analysis from this tool was the availability of employment and

 Data and Geometry; Model Building at Calthorpe Analytics

9

population within walkable distances. The native functionality was not fine-grained enough for our

needs – it would be possible to traverse the network around a large polygon for a distance longer than

our search distance without encountering the node associated with that polygon’s data. This essentially

‘hides’ a polygon holding significant data from the analysis, creating an under count of the variable

across the network. My strategy was to create a voronoi diagram of the network nodes and intersect it

with the base geometries of the polygon set. From this I created a numerical table of the identities and

relative proportions of the area of the polygons that intersect each node’s voronoi polygon. The data of

each polygon is then multiplied by the proportion and assigned to the original voronoi polygons. This

data is then given to the network tool, which finds data in a polygon with a centroid coincident with the

node, and data at every node. This allows the network solving tool to accurately find data at every node

(partial code in appendix, example 2).

The third and final example is a tool for creating new network connectivity in greenfield

development areas without the analyst or user having to manually add new network in areas of

projected future growth. Previous analysis had used a proxy variable, number of intersections, as a

metric for walkability. We replaced these with metrics of actual available resources within the walkable

‘neighborhood’ using the network tool above. This means however that in positing development in a

polygon it needs to be integrated with the network to be part of the solver’s output. The network is

never visualized for the user, so there was no need to make the result ‘look’ like standard development,

only to make it behave topologically like a road network. In this context this means that edges can only

intersect at a node, and edges must connect the most efficient local set of nodes, and the edges under

most circumstances must not intersect the boundary of the underlying polygon. A graphical

representation of the process can be found below in figure 1. I chose Delaunay triangulation to create

the new network; it is the inverse set of voronoi polygons, where points are connected if their polygons

share an edge in the voronoi set. To make the nodes the tool creates a bounding box of the geometry of

 Data and Geometry; Model Building at Calthorpe Analytics

10

the parcel, populates it with 10,000 random points, clips those points to the original geometry, and

performs a k-means clustering with k equal to the number of desired nodes. The resulting points are the

intersections. The Delaunay set is created on those points, and the resulting edges are tested against

the underlying polygon, with edges that intersect the polygon being removed, such that no node is left

without connection to the rest the set, in which case the shortest valid edge to that node is retained. To

find the distance to the existing network, a geometric object of radiating lines is set on each

intersection, and the ids of the existing network edges it intersects are recorded along with the (x,y) of

the closest point of intersection. This table is sorted, and the user-specified number of closest points

are used to connect the new network to the existing network. The existing network is then edited to re-

create the edges that contain the new nodes (code in appendix, example 3).

Beyond tool creation and data analysis, I did a limited amount of basic cartography, largely for

client presentations. I used the functionality of the QGIS Composer Manager to make repetitive map

creation more streamlined. ArcGIS was also used for some cartographic purposes, mainly for

consistently symbolizing land-use classes, a case where the time and work of recreating the layer file for

QGIS were considered overly onerous. Before my tenure, the whole office had migrated extremely

effectively to open source tools, leading to the company no longer maintaining any advanced Esri

licenses or extensions. Unfortunately, the maps I created represent client data, which precludes their

inclusion in this report.

The final type of work I participated in was integrating these new structures into the existing

code base, or the existing version of UrbanFootprint (UF), the in-house GIS product. A coworker

recreated the Vehicle Miles Traveled (VMT) model in Pandas and then we plugged it into UF. This was a

time consuming and frustrating task, trying to understand a very complicated product that had been

developed over a long time with varying degrees of code comments and a very opaque structure. It

 Data and Geometry; Model Building at Calthorpe Analytics

11

became a Frankenstein’s monster of suturing our code into places it was never intended to go, but it

was successful for the task at hand.

I did the majority of my work on solo projects, working ad hoc with other analysts for individual

tasks. We worked in an open workspace and we often used the whiteboard for thinking through

algorithms, code examples, or mathematical calculations. We used the Development team as a

technical resource, often using their deep coding experience to help us find our way through difficulties.

Both Analytics and Development met together weekly to present work, progress, and questions for the

collective. These meetings were often used to walk through ideas and get feedback.

Our collective work in Analytics represented the most visible part of the overall mission of

Calthorpe Analytics. The company’s ‘product’ is the rigor of the process and the integrity of the results.

The leadership encourages, and spends a large amount of intellectual and actual capital on research and

development of new and more sophisticated capabilities. My work spanned the whole of the Analytics

team’s responsibilities and as such gave me a thorough look at the whole process.

 Data and Geometry; Model Building at Calthorpe Analytics

12

Assessing my Internship

My internship with Calthorpe Analytics was an amazing and fruitful part of my education in GIS.

The expectations of excellence and creativity in spatial analysis and Python programming, along with the

time and encouragement to work on difficult and speculative projects drove me to vastly expand my

technical proficiency and understanding of the field. My first year at Clark gave me the technical skills to

work productively in their system. It also sent me out with high level knowledge of spatial analytical

methodology, allowing me to bring new ideas and new approaches to Calthorpe’s dataset. This

internship undoubtedly changed my trajectory in the field, pushing me fully towards tool and algorithm

development.

It is hard to catalogue all the things I learned this summer at Calthorpe. This experience

completely recreated my GIS analytical workflow, bringing the vast majority of vector analysis into

Python and PostgreSQL. It taught me the core of object oriented programming, allowing me to improve

the clarity and efficiency of my code. It improved my overall quantitative mental toolset, showing

example of a wide variety of analytical models and structures. It taught me how to find and assimilate

new technical skills and tools in a very short time. It taught me how to work in a collaborative technical

context using GitHub for version control. In a purely Python context I learned the NumPy, Pandas,

Geopandas, Fiona, Shapely, and PySal (The spatial-statistics package GeoDa’s functionality in Python)

libraries allowing me to create, clean, manipulate and analyze a wide range of data. I created machine

learning tools out of the powerful SciKit-Learn family of libraries, which formed the core of my current

independent study with Professor John Rogan. I learned to work with a PostgreSQL database, which I

also now utilize on my desktop. I also learned significantly from the various skills and backgrounds of

my coworkers, who were a constant source of interesting and useful experience.

 Data and Geometry; Model Building at Calthorpe Analytics

13

The most important skills that I brought with me from Clark were those I learned in Advanced

Vector GIS, and Python/Computer Programming for GIS. As I described in chapter 2, the entire

organization is very skilled using both commercial (ArcGIS) and open source (QGIS) geographic

information systems. My value to the organization began at the point where my skills graduated from

GISystems to GIScience; they were looking for someone to bring in novel and appropriate ways to look

at their data, and explain the meaning of the various outputs. In this regard my exposure to machine

learning and advanced biophysical remote sensing from Professor John Rogan’s Advanced Remote

Sensing also provided me with important contributions. Obviously a high level of Python programming

was essential, but Professor Jie Tien’s set of classes also gave me the programmatic and theoretical

knowledge of the inner workings of the standard geometric model, allowing me to intuitively engage

with complicated new systems, building, decomposing and editing complicated geometries. Professor

Ylli Kellici’s Spatial Statistics with R and Spatial Database Development in Practice were both very

helpful, and my knowledge of the R data model was instrumental in my success with Pandas.

This internship gave me a strong new focus in my studies at Clark, in that I have really

discovered the path through the industry that I want to pursue. My coursework and planning have been

shifted to help me become a credible applicant for jobs involving spatial method and algorithm creation.

I believe that the experience of this summer will be very important to my post-Clark work, both in the

skillsets I now know, and the kind of projects I pursue.

I would encourage students who are very serious about technical GIS to consider being in touch

with Calthorpe, although they do not have a regular internship program. My caveat would be that

unless the student feels like they can step right into enterprise-level Python coding, they might feel out

of their depth in the Analytics office. For the self-selecting student however, there is a tremendous

amount to learn and do if you can define your own course and demonstrate your value to the

organization.

 Data and Geometry; Model Building at Calthorpe Analytics

14

Conclusion

My internship significantly changed my trajectory in the field of Geographic Information science.

I went into the summer believing that the urban planning aspect of the work would be of primary

interest, but discovered that I was wholly engaged by the technical GIS and data science aspects. I am

now aggressively pursuing a career in spatial method and algorithm creation, data science, and aspects

of machine learning – all technical skillsets that I advanced dramatically through my internship.

Calthorpe Analytics was a wonderful environment in which to spend a summer in California. The

workplace culture of bike rides and foosball games kept the overall intensity of the constant drive to

perform and innovate in check, making for easy in-office relationships, and healthy, happy employees.

 Data and Geometry; Model Building at Calthorpe Analytics

15

Figures

Figure 1: New network connectivity for greenfield development:

1

2

3

4

5

6

7

8

 Data and Geometry; Model Building at Calthorpe Analytics

16

Sources

1) Calthorpe Analytics 2016. What We Do [online]. Calthorpe Analytics.
Available from: http://calthorpeanalytics.com/index.html#questions
Accessed 12/7/2016

2) Calthorpe Analytics 2016. Software for Sustainable Decision-Making [online]. Calthorpe Analytics.

Available from: http://calthorpeanalytics.com/index.html#software

Accessed 12/7/2016

3) Southern California Association of Governments 2016. SCAG; Innovating for a Better Tomorrow

[online]. Available from: www.scag.ca.gov

Accessed 12/7/2016

http://calthorpeanalytics.com/index.html#questions
http://calthorpeanalytics.com/index.html#software
http://www.scag.ca.gov/

 Data and Geometry; Model Building at Calthorpe Analytics

17

Appendix:

Code Examples:

Example 1:

from sqlalchemy import create_engine

import pandas as pd
import numpy as np

import geopandas as gpd

import shapely as shp

import matplotlib.pyplot as plt

engine = create_engine('postgresql:xx')

con = engine.connect()

pd.set_option('display.float_format', lambda x: '%.2f' % x)

pSql_city = '''

 SELECT
 parcel as parcelno,

 currentland as land_val,

 currentimpr as imp_val,
 currenttotal as sum_val

 FROM
 public.taxparcels

'''

pSql_count = '''

 SELECT

 parcelno,
 sum_landvalue as land_val,

 sum_improvementvalue as imp_val,

 (sum_landvalue + sum_improvementvalue) as sum_val
 FROM
 public.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

'''

pSql_parcels = '''
 SELECT

 wkb_geometry,

 geography_id,
 parcelno,

 pop,

 emp,

 du_detsf_sl,
 du_detsf_ll,

 du_attsf,

 du_mf,

 bldg_sqft_detsf_sl,

 bldg_sqft_detsf_ll,
 bldg_sqft_attsf,

 bldg_sqft_mf,

 (bldg_sqft_detsf_sl +

 bldg_sqft_detsf_ll +
 bldg_sqft_attsf +

 bldg_sqft_mf +

 bldg_sqft_retail_services +
 bldg_sqft_restaurant +

 bldg_sqft_accommodation +

 bldg_sqft_arts_entertainment +
 bldg_sqft_other_services +

 bldg_sqft_office_services +

 Data and Geometry; Model Building at Calthorpe Analytics

18

 bldg_sqft_public_admin +

 bldg_sqft_education +
 bldg_sqft_medical_services +

 bldg_sqft_transport_warehousing +

 bldg_sqft_wholesale) as total_sqft
 FROM
 base_load.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

'''

pSql_ldc = '''
 SELECT

 a.land_development_category,

 a.gid,
 b.geography_id

 FROM

 base_load.xxxxxxxxxxxxxxxxxxxxxxxxxxxx a,

 public.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx b

 WHERE

 st_intersects(b.wkb_geometry,a.wkb_geometry) AND
 st_within(st_pointonsurface(b.wkb_geometry),a.wkb_geometry)

'''

pSql_type = '''

 SELECT
 gid,

 geog_key

 FROM
 urbanfootprint_reference_datasets.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

'''

data

city_df = pd.read_sql_query(pSql_city, engine)
county_df = pd.read_sql_query(pSql_count, engine)

ldc_df = pd.read_sql_query(pSql_ldc, engine)

type_df = pd.read_sql_query(pSql_type, engine)

parcels_df = pd.read_sql_query(pSql_parcels, engine)

append and clean

values_df = city_df.append(county_df)

dup_series = values_df.duplicated(subset=['parcelno'])

dups = []

for line in dup_series.iteritems():
 if line[1]:

 dups.append(line[0])

parcels_all = values_df.drop_duplicates(subset=['parcelno'])

merge

parcels_df = parcels_df.merge(parcels_all, how='left', on='parcelno')
ldc_df = ldc_df.merge(type_df, how='left', on='gid')

df = parcels_df.merge(ldc_df, how='left', on='geography_id')

calculations
condition = ((base_canvas['base_pop'] + base_canvas['base_emp']) / base_canvas['base_acres_gross'] <= 2) & \

 (base_canvas['intersection_density_sqmi_focal'] < 25)

 base_canvas.loc[condition,'base_land_development_category'] = 'rural'

In[23]:
sum_type=['land', 'imp', 'sum']

du_type =['detsf_sl', 'detsf_ll', 'attsf', 'mf']

norm by parcel area in sqft

 Data and Geometry; Model Building at Calthorpe Analytics

19

for t in sum_type:

 df['norm_'+t+'_val'] = df[t+'_val'] / df['total_sqft']

total residential sqft and du

df['res_sqft_tot'] = df['bldg_sqft_detsf_sl'] + df['bldg_sqft_detsf_ll'] + df['bldg_sqft_attsf'] + df['bldg_sqft_mf']

df['du_tot'] = df['du_detsf_sl'] + df['du_detsf_ll'] + df['du_attsf'] + df['du_mf']

percent residential by total building sqft in parcel

df['percent_res'] = df['res_sqft_tot'] / df['total_sqft']

value / du
agg_list = ['geog_key', 'land_development_category', 'du_detsf_sl', 'du_detsf_ll', 'du_attsf', 'du_mf']

#agg_dict = {'du_detsf_sl':np.sum, 'du_detsf_ll':np.sum, 'du_attsf':np.sum, 'du_mf':np.sum}

for t in sum_type:
 for d in du_type:

 df['val_perUnit_du_'+d+'_'+t] = np.where(df['du_'+d] > 0, df[t+'_val'] / df['du_'+d], 0)

 agg_list.append('val_perUnit_du_'+d+'_'+t)
 #agg_dict['val_perUnit_du_'+d+'_'+t] = np.sum

df_sums = df[agg_list].groupby(['geog_key','land_development_category']).sum()

df_out = pd.DataFrame()
for t in sum_type:

 for d in du_type:

 df_out['ave_perUnit_du_'+d+'_'+t] = df_sums['val_perUnit_du_'+d+'_'+t] / df_sums['du_'+d]

df_out.to_csv('C:/Users/sam/Desktop/AveValueDU.csv')

out to sql

df.to_sql('parcel_land_val', engine, schema='base_load', if_exists='replace')

con.execute('ALTER TABLE base_load.parcel_land_val alter column wkb_geometry set data type geometry')

Example 2:

from sqlalchemy import create_engine

import pandas as pd
import numpy as np

import pandana as pdna

import geopandas as gpd
import shapely as shp

from pandana.loaders import osm

from scipy.spatial import Voronoi

engine = create_engine('postgresql://xx')
con = engine.connect()

config_dict = dict(
 data_table='uf_loadedxxxxxxxxxxxxxxxx',

 data_schema='base_load',

 data_geom_col='wkb_geometry',
 data_index_col='gid',

 prop_table='proportion_table',

 vor_table='voronoi_temp',
 base_schema='base_load',

 net_name='C:/Users/sam/Desktop/xxxxxxxxxxxxxxxxxxxxxxxxxx',
 bbox=(xxxxxxxxxx, yyyyyyyyyyyyy, xxxxxxxxxx, yyyyyyyyy), #tuple (y-min, x-min, y-max, x-max) in srid 4326 WGS 84

 agg_vars = ['acres_parcel_res','acres_parcel_emp','acres_parcel_mixed_use','du','pop','emp','emp_ret']

)

class vor_data_assign(object):

 ## creates nodes from predefined network saved in HDF5 format (net_name = path to file)

 Data and Geometry; Model Building at Calthorpe Analytics

20

 def __init__(self, settings):

 self.s = settings

 net_data = pd.HDFStore(self.s['net_name'])

 self.nodes = net_data.nodes

 # Formats dict input
 var_list = []

 temp = self.s['data_index_col']+', '

 for string in self.s['agg_vars']:
 if string == 'pop':

 temp += 'pop as pop1, '

 var_list.append('pop1')

 else:
 temp += string+', '

 var_list.append(string)

 self.s['data_string'] = temp[:-2]
 self.var_list = var_list

 def create_new_osm_network(self):
 self.network = osm.network_from_bbox(self.s['bbox'][0], self.s['bbox'][1],self.s['bbox'][2], self.s['bbox'][3])

 self.network.save_hdf5(self.s['net_name'])

 ## creates network

 def create_network(self, out=False):
 print 'Building network...'

 self.network = pdna.Network.from_hdf5(self.s['net_name'])

 print 'Done'

 ## creates voronoi table

 def vor_from_nodes(self):

 print 'Creating Voronoi Table...'
 point_array = self.nodes.values

 vor = Voronoi(point_array)

 # creates shapely polygons from valid voronoi regions (polygons)

 region_poly = []

 for region in vor.regions:
 if len(region)>2 and -1 not in region:

 poly = []

 for point in region:
 poly.append(vor.vertices[point])

 region_poly.append(shp.geometry.Polygon(poly))

 #create geopanda and shapely polygon for geoprocessing (within)

 region_gdf = gpd.GeoDataFrame(geometry=region_poly)
 bbox_clip = shp.geometry.Polygon([[self.s['bbox'][1],self.s['bbox'][0]],

 [self.s['bbox'][3],self.s['bbox'][0]],

 [self.s['bbox'][3],self.s['bbox'][2]],
 [self.s['bbox'][1],self.s['bbox'][2]]])

 region_gdf = region_gdf[region_gdf.within(bbox_clip)]

 # df of wkb geoetry of regions
 region_df = pd.DataFrame(map(lambda x: shp.wkb.dumps(x).encode('hex'), region_gdf.geometry), columns=['geometry'])

 # writes voronoi polygons to Postgres, alters table for geometry, index, removes invalid polygons
 region_df.to_sql(self.s['vor_table'], engine, schema=self.s['schema'], if_exists='replace')

 con.execute('ALTER TABLE {base_schema}.{vor_table} ALTER COLUMN geometry SET DATA TYPE geometry'.format(**self.s))

 con.execute('CREATE index ON {base_schema}.{vor_table} USING gist(geometry)'.format(**self.s))

 con.execute('DELETE FROM {base_schema}.{vor_table} WHERE NOT st_isvalid(geometry)'.format(**self.s))

 del region_poly, region_gdf, region_df

 print 'Done'

 ## Creates proportion table - long run time (8+ hours)
 def proportion_table(self):

 Data and Geometry; Model Building at Calthorpe Analytics

21

 psql_prop = '''
 CREATE TABLE {base_schema}.{prop_table}

 AS SELECT

 a.{data_index_col} as block_id,
 st_area(st_transform(a.{data_geom_col}, 4326)) as block_area,

 b.index as poly_id,
 st_setsrid(b.geometry,4326) as geom,

 st_centroid(st_setsrid(b.geometry,4326)) as centroid,

 st_area(st_setsrid(b.geometry,4326)) as poly_area,
 st_area(st_intersection(st_makevalid(st_transform(a.{data_geom_col}, 4326)), st_setsrid(b.geometry,4326))) as sub_area,

 st_area(st_intersection(st_makevalid(st_transform(a.{data_geom_col}, 4326)), st_setsrid(b.geometry,4326))) /

st_area(st_transform(a.{data_geom_col}, 4326)) as percent_of_block,
 st_area(st_intersection(st_makevalid(st_transform(a.{data_geom_col}, 4326)), st_setsrid(b.geometry,4326))) /

st_area(st_setsrid(b.geometry,4326)) as percent_of_poly

 FROM

 {data_schema}.{data_table} a,

 {base_schema}.{vor_table} b

 WHERE
 st_intersects(st_transform(a.wkb_{data_geom_col}, 4326), st_setsrid(b.geometry,4326))

 '''.format(**self.s)

 print 'Creating Proportion Table...'

 con.execute(psql_prop,engine)

 print 'Done'

 #computes the aggregation of the specified vars proportionally to their avaibility in the voronoi polygons
 def compute_network(self, net=''):

 #data
 pSql_data='''

 SELECT

 {data_string}
 FROM

 {data_schema}.{data_table}

 '''.format(**self.s)

 pSql_prop='''
 SELECT

 block_id,

 poly_id,
 st_x(centroid) as x,

 st_y(centroid) as y,

 percent_of_block,
 percent_of_poly

 FROM

 {base_schema}.{prop_table}
 '''.format(**self.s)

 try:
 df_prop = pd.read_sql_query(pSql_prop, engine)

 except:
 user_imp = raw_input('Proportion Table Not Found: Create Now (8+ hours run) y/n : ')

 if user_imp in ('y', 'Y'):
 self.vor_from_nodes()

 self.proportion_table()

 df_prop = pd.read_sql_query(pSql_prop, engine)

 else:

 return

 print 'Computing Network Aggregation...'

 df_data = pd.read_sql_query(pSql_data, engine, index_col=self.s['data_index_col'])

 #creates master df
 df = df_prop.merge(df_data, how='left', left_on='block_id', right_index=True).astype(object)

 Data and Geometry; Model Building at Calthorpe Analytics

22

Aggregate data on Voronoi Polygon

 sum_df = pd.DataFrame()
 sum_df['poly_id'] = df.poly_id

 # create block-proportial sums
 for var in self.var_list:

 sum_df[var+'_poly'] = df[var] * df.percent_of_block

 #group by polygon id
 group = sum_df.groupby('poly_id')

 #apply np.sum to all block-proportional data columns

 var_dict = {}

 for var in self.var_list:
 var_dict[var+'_poly'] = np.sum

 agg_df = group.agg(var_dict)

 # Data reassigned spatial context
 df_coords = df[['poly_id', 'x','y']].drop_duplicates('poly_id')

 df_poly_sum = agg_df.merge(df_coords, how="left", left_index=True, right_on='poly_id')

 del df_coords

Network set

 x, y = df_poly_sum.x, df_poly_sum.y

 #look for preexisting network (avoids multiple graph memory issue in pandana)

 if net=='':

 try:
 df_poly_sum['node_ids'] = self.network.get_node_ids(x,y)

 except:
 self.create_network()
 df_poly_sum['node_ids'] = self.network.get_node_ids(x,y)

 print 'Continuing Network Aggregation...'

 else:
 self.network = net

 df_poly_sum['node_ids'] = self.network.get_node_ids(x,y)

 self.network.precompute(401)

 # create dataframe, assign data to the network by node, and populate with network aggregation
 df_net_results = pd.DataFrame()

 for var in self.var_list:

 self.network.set(df_poly_sum.node_ids, variable=df_poly_sum[var+'_poly'], name=var)
 df_net_results[var+'_net_sum'] = self.network.aggregate(401,type="sum", decay="flat", name=var)

 df_poly_sum = df_poly_sum.merge(df_net_results, how='left', left_on='node_ids', right_index=True)

 df = df.merge(df_poly_sum, how='left', on='poly_id')

 del df_poly_sum, df_net_results

 Data and Geometry; Model Building at Calthorpe Analytics

23

Example 3:

attributes:

bbox - bounding box (xmin, ymin, xmax, ymax) in 4326 for osm network ingest
net_name - location of HDF5 network store

pSql - sql string for data

crs_data - epsg code for projected data
engine - connection engine

con - engine.connect object

net_data - HDF5 data store object
nodes - master list of nodes

m_nodes_gdf - master gdf of nodes

edges - master list of edges

edges_raw - copy of store 'edges'

data_gdf - gdf of data_gdf

m_edges_gdf - master gdf of edges
nodes_gdf - gdf of new nodes

poly - shapely polygon of geometry

basic_poly - shapely polgon of nodes exterior ring
edges_gdf - gdf of new edges

prox_table - df of closest network edges to nodes of new subnet (ordered)

connect_id - index value of node inserted into existing network

methods:

refresh_network() - re-ingests a network from osm (by bbox), writes to HDF5 store

data_in() - creates core df and gdf tables

find_new_nodes(geography_id, # of intersections(n)) - finds set of n new nodes within geometry
edge_poly() - creates simple edge set from exterior ring of new nodes

edge_delaunay() - creates complex edge set based on delaunay triangulation

trim_net() - removes edges from set where the edge intersects the underlying geometry,

does not allow for orphaned nodes

find_closest_point() - creates an ordered table of information on the closest edges from the new nodes
add_connect_edge(series from above table) - addes an edge from point to closest edge

replace_intersect_edge(series from above table) - replaces closest edge with two edges linking to network

add_nodes_HDF5() - adds new nodes to HDF5 store
add_edges_HDF5() - adds new edges to HDF5 store

 def __init__(self, user_dict):

 self.bbox = user_dict['bbox']
 self.net_name= user_dict['net_name']

 self.pSql = user_dict['psql'].format(schema=user_dict['schema'], data_table=user_dict['data_table'])

 self.crs_data = user_dict['crs_data']

 self.engine = create_engine(user_dict['connect_string'])

 self.con = self.engine.connect()

 def refresh_network(self, num=2):

 try:
 pdna.network.reserve_num_graphs(num)

 except:

 pass

 self.network = osm.network_from_bbox(self.bbox[0],self.bbox[1],self.bbox[2],self.bbox[3])

 self.network.save_hdf5(self.net_name)

 def data_in(self):

 self.net_data = pd.HDFStore(self.net_name)

 Data and Geometry; Model Building at Calthorpe Analytics

24

 nodes, edges = self.net_data.nodes, pd.DataFrame(self.net_data.edges.values, columns=['from', 'to', 'imp'])

 edges_raw = self.net_data.edges

 gdf = gpd.read_postgis(self.pSql, self.engine, geom_col='geometry')

 gdf.crs = {'init' : self.crs_data} #sets crs to match values

 nodes_gdf = gpd.GeoDataFrame(geometry=map(lambda x, y: shp.geometry.Point(x, y), nodes['x'], nodes['y']))
 nodes_gdf.index = nodes.index

 nodes_gdf.crs = {'init' :'epsg:4326'} # sets crs to match osm standard

 nodes_gdf.to_crs({'init' : self.crs_data}, inplace=True) # reprojected to match data

 edges = edges.merge(nodes, how='left', left_on='from', right_index=True)

 edges = edges.merge(nodes, how='left', left_on='to', right_index=True, suffixes=['_from', '_to'])
 edge_array = edges[['x_from', 'y_from', 'x_to', 'y_to']].as_matrix()

 edge_list = []
 for edge in edge_array:

 edge_list.append(shp.geometry.LineString([(edge[0], edge[1]), (edge[2], edge[3])]))

 edges_gdf = gpd.GeoDataFrame(geometry=edge_list)

 edges_gdf = edges_gdf.merge(edges[['from','to','imp']], how='left', left_index=True, right_index=True)

 edges_gdf.crs = {'init' :'epsg:4326'}
 edges_gdf.to_crs({'init' : self.crs_data}, inplace=True)

 self.nodes, self.m_nodes_gdf, self.edges, self.edges_raw = nodes, nodes_gdf, edges, edges_raw

 self.data_gdf, self.m_edges_gdf = gdf, edges_gdf

 def find_new_nodes(self, id_num, intersections): #data gdf, id, number of intersections to create

 geo_poly = self.data_gdf[self.data_gdf.geography_id == id_num].geometry.values[0]
 poly = self.data_gdf[self.data_gdf.geography_id == id_num].geometry.bounds.values

 minx, miny, maxx, maxy = poly[0][0], poly[0][1], poly[0][2], poly[0][3]

 rand_points_list = []

 #random points

 for n in range(0,10000):

 x_rand, y_rand = np.random.randint(minx, maxx), np.random.randint(miny, maxy)

 rand_points_list.append(shp.geometry.Point(float(x_rand), float(y_rand)))

 rand_points_gdf = gpd.GeoDataFrame(geometry=rand_points_list)

 rand_points_gdf.crs = {'init' :'epsg:32154'}

 #points within geometry

 point_obj = shp.ops.cascaded_union(rand_points_gdf.geometry)

 points = point_obj.intersection(geo_poly)

 #Kmeans clusters
 est_mini = MiniBatchKMeans(init='random', n_clusters=intersections, n_init=10)

 fit = est_mini.fit(points)

 #nodes from cluster centers

 nodes_list = []

 for point in fit.cluster_centers_:
 nodes_list.append((point[0], point[1]))

 #arranges points counter clock-wise

 mean_x = np.sum(x[0] for x in nodes_list) / len(nodes_list)

 mean_y = np.sum(x[1] for x in nodes_list) / len(nodes_list)

 def arctan(x):

 return(math.atan2(x[0] - mean_x, x[1] - mean_y) + 2 * math.pi) % (2 * math.pi)

 l = sorted(nodes_list, key=arctan)
 out_poly = shp.geometry.Polygon(l)

 #geometry from reordered points
 geom_list =[]

 for point in l:

 geom_list.append(shp.geometry.Point(point[0], point[1]))

 Data and Geometry; Model Building at Calthorpe Analytics

25

 new_nodes_gdf = gpd.GeoDataFrame(geometry=geom_list)

 new_nodes_gdf['coords'] = l

 #assigns ids from master node gdf

 new_ids = []
 ids = self.nodes.index.max() + 1

 for n in range(len(new_nodes_gdf.geometry)):
 new_ids.append(ids + n)

 new_nodes_gdf['index_']=new_ids
 #new_nodes_gdf.set_index('index', inplace=True)

 self.nodes_gdf, self.poly, self.basic_poly = new_nodes_gdf, geo_poly[0], out_poly

 def edge_poly(self): #creates to/from indexed edges from exterior edges of polygon

 coords = self.basic_poly.exterior.coords

 line_list = []

 id_list = []
 length_list = []

 for i in range(len(coords) -1):
 line = shp.geometry.LineString((coords[i], coords[i+1]))

 line_list.append(line)

 length_list.append(line.length)
 if self.nodes_gdf.index[i] == self.nodes_gdf.index[-1]:

 id_list.append((self.nodes_gdf.index_[i], self.nodes_gdf.index_[0]))

 else:
 id_list.append((self.nodes_gdf.index_[i], self.nodes_gdf.index_[i+1]))

 edges_gdf = gpd.GeoDataFrame(geometry=line_list)

 edges_gdf['edge_id'] = id_list

 edges_gdf['distance'] = length_list

 self.edges_gdf = edges_gdf

 def edge_delaunay(self): #creates to/from indexed edges of all unique edges created by DeLaunay triangulation of new nodes

 array = []

 for i in range(len(self.nodes_gdf.coords)):

 array.append(self.nodes_gdf.coords.values[i])

 np.asarray(array)

 mesh = Delaunay(array)

 id_list = []

 line_list = []
 length_list = []

 for simp in mesh.simplices:
 for i in range(0,3):

 if i == 2:

 line = shp.geometry.LineString([self.nodes_gdf.coords[simp[i]],self.nodes_gdf.coords[simp[0]]])

 id_list.append((self.nodes_gdf.index_[simp[i]],self.nodes_gdf.index_[simp[0]]))

 line_list.append(line)

 length_list.append(line.length)

 else:
 line = shp.geometry.LineString([self.nodes_gdf.coords[simp[i]],self.nodes_gdf.coords[simp[i+1]]])

 id_list.append((self.nodes_gdf.index_[simp[i]],self.nodes_gdf.index_[simp[i+1]]))
 line_list.append(line)

 length_list.append(line.length)

 edges_gdf = gpd.GeoDataFrame(geometry=line_list)

 edges_gdf['edge_id'] = id_list
 edges_gdf['distance'] = length_list

 edge_copy = edges_gdf.copy()
 for i in edge_copy.index:

 Data and Geometry; Model Building at Calthorpe Analytics

26

 for j in edges_gdf.index:

 if i != j:
 if edge_copy.geometry[i].equals(edge_copy.geometry[j]):

 edges_gdf.drop(i, inplace=True)

 self.edges_gdf = edges_gdf

 def trim_net(self): # removes edges that intersect the boundary of the root geography

 outline = shp.ops.cascaded_union(self.poly.exterior)

 nodes = []
 drop_list = []

 for line in self.edges_gdf.iterrows():

 if line[1][0].intersects(outline):
 drop_list.append(line[0])

 else:
 nodes.append(line[1][1][0])
 nodes.append(line[1][1][1])

 lost_nodes = []
 for row in self.nodes_gdf.iterrows():

 if row[1]['index_'] not in nodes:
 lost_nodes.append(row[1]['index_'])

 keep_line = ''
 keep_length = 10000

 for line in drop_list:

 if self.edges_gdf.loc[line][1][0] in lost_nodes or self.edges_gdf.loc[line][1][1] in lost_nodes:
 if self.edges_gdf.loc[line][0].length < keep_length:

 keep_length = self.edges_gdf.loc[line][0].length

 keep_line = line

 if keep_line in drop_list:
 drop_list.remove(keep_line)

 for line in drop_list:

 self.edges_gdf.drop(line, inplace=True)

 self.edges_gdf.reset_index(drop=True, inplace=True)

 def find_closest_point(self):

 close_dict = {}

 index = 0
 centers = self.nodes_gdf.coords

 for center in centers:

 #defines line of length 1000 'north' of point

 x, c_y, e_y = center[0], center[1], center[1] + 1000
 line = shp.geometry.LineString([(x, c_y), (x, e_y)])

 #creates radial 'star' of lines
 center_point = shp.geometry.Point(x, c_y)

 radii= [shp.affinity.rotate(line, i, (x,c_y)) for i in range(0,360,10)]

 mergedradii = shp.ops.cascaded_union(radii)

 #set of all network edges that intersect with 'star' object
 edge_set = self.m_edges_gdf[self.m_edges_gdf.geometry.intersects(mergedradii)]

 #finds closest edge
 min_dist = ''

 line_num = ''

 for line in edge_set.iterrows():
 d = center_point.distance(line[1].geometry)

 if min_dist == '':
 min_dist = d

 line_num = (line[1].name)

 elif d < min_dist:
 min_dist = d

 Data and Geometry; Model Building at Calthorpe Analytics

27

 line_num = (line[1].name)

 #set of intersection points on closest network edge

 union_obj = mergedradii.intersection(edge_set.ix[line_num, 'geometry'])

 try:
 intersection_points = list(union_obj.geoms)

 #finds closest point within set of points

 min_dist = ''

 point_num = ''
 i = 0

 for point in intersection_points:

 d = center_point.distance(point)
 if min_dist == '':

 min_dist = d

 point_num = i
 elif d < min_dist:

 min_dist = d

 point_num = i

 i+=1

 out_xy = intersection_points[point_num].coords

 except:
 min_dist = center_point.distance(union_obj)

 out_xy = union_obj.coords

 #adds index:tuple of results for each point

 close_dict[index] = (line_num, min_dist, out_xy)
 index += 1

 out = pd.DataFrame.from_dict(close_dict, orient='index')
 out.columns = ['line_number', 'length', 'coords']

 out['to'] = self.m_edges_gdf.loc[out.line_number.tolist()]['to'].values

 out['from'] = self.m_edges_gdf.loc[out.line_number.tolist()]['from'].values
out['to_coords'] = self.m_edges_gdf.loc[out.line_number.tolist()]['to'].values

 out.index.names = ['node']

 out.sort_values('length', inplace=True)
 out.drop_duplicates('line_number', inplace=True)

 out.reset_index(inplace=True)

 self.prox_table = out

 def add_connect_edge(self, line): #line - series from self.prox_table

 #adds the node that is the intercept point handed from the find_closest_point() output tuple

 self.nodes_gdf = self.nodes_gdf.append({'geometry':shp.geometry.Point(line['coords'][0]), 'coords':line['coords'][0],

'index_':self.nodes_gdf.index_.max() + 1}, ignore_index=True)

 #creates a line from the intercept point to the closest node, calculates distance

 line_out = shp.geometry.LineString([line['coords'][0],self.nodes_gdf.loc[line['node']].geometry.coords[0]])
 length = line_out.length

 #appends the line to line_gdf

 self.edges_gdf = self.edges_gdf.append({'geometry':line_out, 'edge_id':(self.nodes_gdf.index_.max(),

self.nodes_gdf.loc[line['node']].index_), 'distance':length}, ignore_index=True)

 def replace_intersect_edge(self, line): #line - series from self.prox_table

 #drop existing edge
 self.edges_raw.drop((line['to'], line['from']), inplace=True)

 #gets index of connection node

 self.connect_id = self.nodes_gdf.loc[line.node]['index_']

 #create new connection edges (to)

 to_line = shp.geometry.LineString([line['coords'][0], self.m_nodes_gdf.loc[line['to']].geometry.coords[0]])

 self.edges_gdf = self.edges_gdf.append({'geometry':to_line, 'edge_id':(line['to'],
self.nodes_gdf.loc[line['node']].index_), 'distance':to_line.length}, ignore_index=True)

 #create new connection edges (from)

 from_line = shp.geometry.LineString([line['coords'][0], self.m_nodes_gdf.loc[line['from']].geometry.coords[0]])
 self.edges_gdf = self.edges_gdf.append({'geometry':from_line, 'edge_id':(line['from'],

self.nodes_gdf.loc[line['node']].index_), 'distance':from_line.length}, ignore_index=True)

 Data and Geometry; Model Building at Calthorpe Analytics

28

 def add_nodes_HDF5(self): #new node gdf, existing nodes, HDF5 store obj

 #converts calculated index into gdf index obj
 self.nodes_gdf.set_index('index_', inplace=True)

 #reverts projection to geographic
 self.nodes_gdf.crs = {'init' :'epsg:32154'}

 self.nodes_gdf.to_crs({'init' :'epsg:4326'}, inplace=True)

 #converts points to coordinates for network HDF5

 xlist, ylist = [], []
 for tup in self.nodes_gdf.geometry.values:

 xlist.append(tup.x)

 ylist.append(tup.y)

 self.nodes_gdf['x'], self.nodes_gdf['y'] = xlist, ylist

 #writes nodes to HDF5

 self.nodes = self.nodes.append(self.nodes_gdf[['x','y']])
 self.net_data['nodes']=self.nodes

 def add_edges_HDF5(self): #new edges, raw edge df from store, HDF5 store obj

 #create multiIndex obj
 tuples = list(self.edges_gdf.edge_id)

 index = pd.MultiIndex.from_tuples(tuples)

 #creates a formated output df

 out = pd.DataFrame(columns=['from','to','distance'], index=index)

 for line in self.edges_gdf.iterrows():
 out.loc[line[1][1]] = [line[1][1][0],line[1][1][1],line[1][2]]

 out[['from', 'to']] = out[['from', 'to']].astype(np.int64)

 out['distance'] = out['distance'].astype(np.float64)

 #writes edges to HDF5

 self.edges_raw = self.edges_raw.append(out)

 self.net_data['edges']=self.edges_raw

	Clark University
	Clark Digital Commons
	5-2017

	Data and Geometry; Model Building at Calthorpe Analytics
	Samuel M. Upton
	Recommended Citation

	Data and Geometry; Model Building at Calthorpe Analytics

