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Abstract 

Data and Geometry; Model Building at Calthorpe Analytics 

Samuel Upton 

 

 

 This report documents my Summer 2016 internship with Calthorpe Analytics, a Berkeley CA-

based urban planning firm. Calthorpe Analytics specializes in scenario development for planning, 

modeling, and plan evaluation for government and municipal clients. The primary responsibility of my 

internship was model development and refinement using advanced spatial analytics working in the 

Python programming language. The internship was extremely successful: it gave me a great opportunity 

to strengthen my open source GIS skillset, deepen my understanding of data science, and vastly improve 

my geospatial programming skillset.  It also gave me a chance to apply advanced geospatial modeling 

and spatial statistics in practice.  The firm provided a great working environment and a very supportive 

culture in which to learn and test new ideas and techniques.  The following paper will expand on the 

work of Calthorpe Analytics, their culture and organization, my contributions to their workflow, and 

reflect on the personal and professional impact of the internship. 
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Introduction 

 

My internship this past summer took me to North Berkeley, and a firm called Calthorpe 

Analytics.  This firm performs scenario-based growth projection and outcome modeling for 

municipalities.  I joined their Analytics team, a group of young engineers, planners, and data scientists 

who perform client analysis and develop new methodologies to increase the value of the data products.   

I made the connection with the organization through a friend and GISDE alumnus, who was a long-time 

employee of Calthorpe Analytics and had created the core of their spatial analytical processes before 

moving on.  My work centered on Python programming, advanced spatial analytics, and data science.  I 

was primarily focused on the research and development aspect, in that I was not there long enough to 

take on primary longitudinal responsibility for a client project.  I thoroughly immersed myself in the 

workplace culture, a free-wheeling intellectual environment that was extremely open to innovation, 

paired with weekly bike rides and weekend adventures.  My work drove my programming skill and 

technical GIS toolset to a much higher plane, teaching me powerful new methods, tools, and approaches 

that have become integral to my GIScience workflows. 
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Organization 

 

Calthorpe Analytics is an urban planning and software development company that specializes in 

analyzing and modeling the long-term outcomes of policy decisions. Their particular focus is the impact 

of the built environment and land-use on financial, environmental, health, and transportation outcomes.  

The leadership of the organization brings tremendous experience in urban planning to bear on the 

technical specificity of modeling. It is a sister firm to Calthorpe Associates, an urban design, planning and 

architecture firm founded by Peter Calthorpe, a leader in sustainability and smart urbanism.  The client 

base is municipalities, municipal associations, national policy groups, environmental organizations and 

state and national governments.  

 Calthorpe Analytics has two major teams: Analytics, which performs scenario analysis for 

clients, and through this process develops and improves the firm’s analytical methods and models, and 

Development, a software development team which is creating a planning-specific GIS, Urban Footprint, 

that incorporates the firm’s core analytic structures and models, and will deliver that functionality 

directly to customers. 

The firm’s three major analytical packages are Urban Footprint, a web-based planning-specific 

GIS, RapidFire, a non-spatially informed Excel spreadsheet-based planning package, and the core 

analytical package that informs client projects, which is a mix of spatial and non-spatial models 

implemented in Python and PostgreSQL.  All three packages are built in-house, or based on house-

developed models. 

The basic structure of the analysis performed by Calthorpe focuses on suitability analysis to 

model different future scenarios based on client-supplied policy assumptions.  This creates a set of 

scenarios representing different projections of the spatial distribution of growth within a municipality’s 

extent.  The suitability analysis looks at series of metrics, unit normalized, and weights them, creating a 
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single 0-1 overall suitability score, with development barriers masked out.  Growth is then assigned by 

suitability rank until the growth has been allocated.  Once the scenarios are created, the tabular results 

are used, along with limited third-party transportation analysis, to run non-spatial, multi-tiered 

multivariate and log models, producing a series of topic-specific outputs for a series of metrics, including 

environmental, transportation, health, and economic outcomes. 

 

Model Flow Chart: 

 

 

Mission 

The firm’s mission is to provide analytically rigorous future scenarios that support the goals of 

sustainable urban development, healthy urban environments, expanded mass and rapid transit options, 

and environmental protection.1 The analytic models that are at the core of the firm’s work emphasize 

long term outcomes, highlighting the hidden costs of rapid and poorly conceived development 

compared with more sustainable practices.  The Analytics team goals are to provide targeted, context-

informed products to clients while constantly working to increase the accuracy and integrity of the 

models, keeping Calthorpe at the forefront of the field.  Towards this goal, there is a constant emphasis 

on research and development projects, and keeping abreast of technical developments in urban 

planning and spatial computing.  The Development team’s goal is to create a technologically advanced, 



  Data and Geometry; Model Building at Calthorpe Analytics 

4 
 

stable, scalable, and usable piece of software that will find a place in the planning data ecosystem2, and 

well as provide a platform for routine internal analysis. 

 

Work 

 Calthorpe Analytics has worked all over the country and is expanding its international presence. 

It has completed major projects in Utah, Ohio, Hawaii, Colorado, Wisconsin, Texas.  In California they 

helped create Vision California, the first state-wide smart growth plan, and the long-term plan for SCAG 

(Southern California Association of Governments) the largest metropolitan planning organization in the 

country, encompassing over 18 million residents3.  The firm has worked in Mexico, and is exploring 

opportunities in both India and China.   

 

Spatial Analysis and Mapping 

 Geospatial information is one of the core building blocks of the company’s products, and as such 

is pervasive in the organization.  Basic fluency in Geographic Information Systems (GIS) structure and 

methodology, as well as strong programming skill are common at every tier of the organization.  Higher 

level Geographic Information Science (GISci), spatial method and algorithm development, and spatial 

modeling happen with the Analytics team.  During my internship the team as made up of 4 members 

with advanced degrees in engineering, transportation engineering, and urban planning.  The most 

common GISci projects and tasks are centered on model refinement and associated variable creation.  

Mapping is generally undertaken for client presentations, but on the whole cartography is a very minor 

part of the workflow on the organization.  The majority of GISci tasks are done outside of commercial 

GIS packages.  The modeling is implemented in Python spatial libraries (Fiona, Shapely, Geopandas) and 

in the larger ecosystem of Python data science libraries. 
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GIS workflow: 

 

 

Organizational Structure and Culture 

 As a small company Calthorpe Analytics has a very open and level organization.  The co-founder, 

Joe DiStefano, heads both the Planning and Software teams, and is the lead on client communication 

and new client acquisition.  Erika Lew is lead planner and manages the Analytics team.  The rest of the 

team will act as lead on various projects, from small technical tasks to longitudinal multi-year client 

projects.  These tasks are assigned on both availability, and on the specific technical requirements of the 

job with each team member representing a specific set of strong technical/operational skills.  The 

Development team duplicates this overall structure.  Both Calthorpe Analytics and Associates are 

diverse in terms of gender, ethnicity and nationality at all organizational levels.  The overall office is 

informal in both dress and demeanor, with a dedicated, self-motivated group.  There are daily check-in 

meetings to manage work flow, weekly meetings for strategic goals, and weekly lunchtime bike rides up 

into the Berkeley hills. 

 

Strengths 

 Calthorpe Analytics’ greatest strengths are its relentless focus on innovation and improvement, 

and its openness to new points of view.  Even the most routine structures of the analytic process are 

under constant review and scrutiny.  Employees are encouraged to bring their particular interests and 
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expertise to the table and will get a hearing of their ideas, often at the weekly demonstration period 

held every Friday.  It is a chance for the whole team to sit down and show progress, describe interesting 

new ideas, new methods, to ask for group help on problems, and to poll the group and leadership on the 

feasibility/desirability of new tools.  The downside of this approach is that it can be hard to keep all the 

many pieces running together, keep errors out of code and data, and keep the whole team up to date 

on the current state of the art.  Going forward the company is switching to a more formal ‘release 

version’ of its analytic package (i.e. v1.0, v1.1, v1.2), mirroring the structure of the software 

development project.  This would allow for more comprehensive testing and stability, as well as more 

ease in reporting methods to clients.  
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Internship Responsibilities 

 

The core of my internship was the creation of advanced spatial analytic tools in the Python 

programming language, integrating the open-source Pandas and Geopandas data science libraries. My 

internship duties and responsibilities fell into several main categories: direct spatial and data analysis for 

client projects, research and development of spatial methods for future projects, integrating new data 

structures into existing in-house modeling software, and limited cartography for client-facing 

communication. My individual projects were either direct requests from within the department for a 

specific analysis or functionality, or self-directed exploration around expanding the overall quality or 

accuracy of the larger modeling environment. 

The first phase of my responsibilities was learning to work in a new software environment.  The 

Analytics department runs on Windows with Ubuntu Linux operating systems running on virtual 

machines for full-scale model runs.  The data is kept on several large PostgreSQL databases using the 

PostGIS spatial extension. All the analysis is conducted in Python.  I entered my internship with a good 

Python skillset, but without much experience with large datasets or complex spatial or data analysis.  

The start of my internship coincided with a new push to replace the traditional Python approach to 

tabular data - nested dictionaries - with a new and more powerful data-science library Pandas (PANel 

DAta, a reference to the three-dimensional data structure) and its spatial extension Geopandas.  The 

fundamental goal of the Pandas library development is to bring the data-structures and analytical power 

of the statistical programming language R to Python.  It recreates R’s basic vector/matrix scheme with its 

attendant efficiencies of item-wise vector math, allowing for computational efficiency over large 

datasets.  The library sits on top of the NumPy library, a core toolset for Python.  At the start of my time 

at Calthorpe, I had more knowledge of R than my teammates and no client-specific responsibilities, so it 

was agreed that I would spearhead the push to integrate the new methods.  This meant a lot of reading 
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along with a set of practical problems that allowed me to find my way in the new structures. For the rest 

of internship, along with my other responsibilities, I was the resident reference for Pandas functionality, 

and often contributed code-snippets of specific operations in colleague’s work. This nested naturally 

with learning and exploiting the power the of spatial extension of the data structure, Geopandas, and 

the still somewhat experimental network analysis toolset Pandana (Panda Network Analyst).  

Geopandas utilizes the Shapely library to create and manipulate vector spatial structures and produce 

Well Known Binary (WKB) format output for visualization in QGIS.  It maintains a consistent projection 

using either EPSG or Proj4 definitions. 

To further describe my internship, I will more fully describe several projects that I worked on or 

completed.  The first is a script to draw out the per-unit average value of different types of structures 

across four large-scale spatial regimes (city, town, village) each with three potential land development 

density categories (standard, compact, urban).  The script starts with multiple SQL queries to gather the 

requisite information from multiple tables.  These are created as Pandas data frames, the basic 2d 

structure in the library, where they are joined on the unique geography id of the parcels, and duplicate 

records are dropped.  The early part of every client project includes extensive data ingestion and 

cleaning, so I was able to assume a very high level of data integrity in my work, thus throughout my code 

there are relatively few cleaning and null-value testing routines.  The value data in the merged table is 

then normalized by developed square footage. The table is then grouped by the two development 

categories and summed by assemblage (code in appendix, example 1).   

The second example is allocating input data from base geometries to a network model that 

assigns all data to nodes.  We needed to assign a proportion of the data in a polygon to the appropriate 

node, not double count data, with a node potentially capturing data from multiple polygons.  The 

Pandana tool assigns data to nodes where all data from a polygon is set to the node closest to the 

polygon centroid.  Our end-product analysis from this tool was the availability of employment and 
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population within walkable distances.  The native functionality was not fine-grained enough for our 

needs – it would be possible to traverse the network around a large polygon for a distance longer than 

our search distance without encountering the node associated with that polygon’s data.  This essentially 

‘hides’ a polygon holding significant data from the analysis, creating an under count of the variable 

across the network.  My strategy was to create a voronoi diagram of the network nodes and intersect it 

with the base geometries of the polygon set.  From this I created a numerical table of the identities and 

relative proportions of the area of the polygons that intersect each node’s voronoi polygon.  The data of 

each polygon is then multiplied by the proportion and assigned to the original voronoi polygons.  This 

data is then given to the network tool, which finds data in a polygon with a centroid coincident with the 

node, and data at every node.  This allows the network solving tool to accurately find data at every node 

(partial code in appendix, example 2).  

The third and final example is a tool for creating new network connectivity in greenfield 

development areas without the analyst or user having to manually add new network in areas of 

projected future growth.  Previous analysis had used a proxy variable, number of intersections, as a 

metric for walkability.  We replaced these with metrics of actual available resources within the walkable 

‘neighborhood’ using the network tool above.  This means however that in positing development in a 

polygon it needs to be integrated with the network to be part of the solver’s output. The network is 

never visualized for the user, so there was no need to make the result ‘look’ like standard development, 

only to make it behave topologically like a road network.  In this context this means that edges can only 

intersect at a node, and edges must connect the most efficient local set of nodes, and the edges under 

most circumstances must not intersect the boundary of the underlying polygon.  A graphical 

representation of the process can be found below in figure 1.  I chose Delaunay triangulation to create 

the new network; it is the inverse set of voronoi polygons, where points are connected if their polygons 

share an edge in the voronoi set.  To make the nodes the tool creates a bounding box of the geometry of 
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the parcel, populates it with 10,000 random points, clips those points to the original geometry, and 

performs a k-means clustering with k equal to the number of desired nodes.  The resulting points are the 

intersections.  The Delaunay set is created on those points, and the resulting edges are tested against 

the underlying polygon, with edges that intersect the polygon being removed, such that no node is left 

without connection to the rest the set, in which case the shortest valid edge to that node is retained.  To 

find the distance to the existing network, a geometric object of radiating lines is set on each 

intersection, and the ids of the existing network edges it intersects are recorded along with the (x,y) of 

the closest point of intersection.  This table is sorted, and the user-specified number of closest points 

are used to connect the new network to the existing network.  The existing network is then edited to re-

create the edges that contain the new nodes (code in appendix, example 3). 

Beyond tool creation and data analysis, I did a limited amount of basic cartography, largely for 

client presentations.  I used the functionality of the QGIS Composer Manager to make repetitive map 

creation more streamlined.  ArcGIS was also used for some cartographic purposes, mainly for 

consistently symbolizing land-use classes, a case where the time and work of recreating the layer file for 

QGIS were considered overly onerous.  Before my tenure, the whole office had migrated extremely 

effectively to open source tools, leading to the company no longer maintaining any advanced Esri 

licenses or extensions. Unfortunately, the maps I created represent client data, which precludes their 

inclusion in this report. 

The final type of work I participated in was integrating these new structures into the existing 

code base, or the existing version of UrbanFootprint (UF), the in-house GIS product.  A coworker 

recreated the Vehicle Miles Traveled (VMT) model in Pandas and then we plugged it into UF.  This was a 

time consuming and frustrating task, trying to understand a very complicated product that had been 

developed over a long time with varying degrees of code comments and a very opaque structure.  It 
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became a Frankenstein’s monster of suturing our code into places it was never intended to go, but it 

was successful for the task at hand.  

I did the majority of my work on solo projects, working ad hoc with other analysts for individual 

tasks.  We worked in an open workspace and we often used the whiteboard for thinking through 

algorithms, code examples, or mathematical calculations.  We used the Development team as a 

technical resource, often using their deep coding experience to help us find our way through difficulties.  

Both Analytics and Development met together weekly to present work, progress, and questions for the 

collective.  These meetings were often used to walk through ideas and get feedback.   

Our collective work in Analytics represented the most visible part of the overall mission of 

Calthorpe Analytics.  The company’s ‘product’ is the rigor of the process and the integrity of the results.  

The leadership encourages, and spends a large amount of intellectual and actual capital on research and 

development of new and more sophisticated capabilities. My work spanned the whole of the Analytics 

team’s responsibilities and as such gave me a thorough look at the whole process.    
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Assessing my Internship 

 

My internship with Calthorpe Analytics was an amazing and fruitful part of my education in GIS.  

The expectations of excellence and creativity in spatial analysis and Python programming, along with the 

time and encouragement to work on difficult and speculative projects drove me to vastly expand my 

technical proficiency and understanding of the field.  My first year at Clark gave me the technical skills to 

work productively in their system. It also sent me out with high level knowledge of spatial analytical 

methodology, allowing me to bring new ideas and new approaches to Calthorpe’s dataset.  This 

internship undoubtedly changed my trajectory in the field, pushing me fully towards tool and algorithm 

development. 

It is hard to catalogue all the things I learned this summer at Calthorpe.  This experience 

completely recreated my GIS analytical workflow, bringing the vast majority of vector analysis into 

Python and PostgreSQL.  It taught me the core of object oriented programming, allowing me to improve 

the clarity and efficiency of my code.  It improved my overall quantitative mental toolset, showing 

example of a wide variety of analytical models and structures.  It taught me how to find and assimilate 

new technical skills and tools in a very short time.  It taught me how to work in a collaborative technical 

context using GitHub for version control.  In a purely Python context I learned the NumPy, Pandas, 

Geopandas, Fiona, Shapely, and PySal (The spatial-statistics package GeoDa’s functionality in Python) 

libraries allowing me to create, clean, manipulate and analyze a wide range of data.  I created machine 

learning tools out of the powerful SciKit-Learn family of libraries, which formed the core of my current 

independent study with Professor John Rogan.  I learned to work with a PostgreSQL database, which I 

also now utilize on my desktop.  I also learned significantly from the various skills and backgrounds of 

my coworkers, who were a constant source of interesting and useful experience. 
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The most important skills that I brought with me from Clark were those I learned in Advanced 

Vector GIS, and Python/Computer Programming for GIS.  As I described in chapter 2, the entire 

organization is very skilled using both commercial (ArcGIS) and open source (QGIS) geographic 

information systems.  My value to the organization began at the point where my skills graduated from 

GISystems to GIScience; they were looking for someone to bring in novel and appropriate ways to look 

at their data, and explain the meaning of the various outputs.  In this regard my exposure to machine 

learning and advanced biophysical remote sensing from Professor John Rogan’s Advanced Remote 

Sensing also provided me with important contributions.  Obviously a high level of Python programming 

was essential, but Professor Jie Tien’s set of classes also gave me the programmatic and theoretical 

knowledge of the inner workings of the standard geometric model, allowing me to intuitively engage 

with complicated new systems, building, decomposing and editing complicated geometries.  Professor 

Ylli Kellici’s Spatial Statistics with R and Spatial Database Development in Practice were both very 

helpful, and my knowledge of the R data model was instrumental in my success with Pandas. 

This internship gave me a strong new focus in my studies at Clark, in that I have really 

discovered the path through the industry that I want to pursue.  My coursework and planning have been 

shifted to help me become a credible applicant for jobs involving spatial method and algorithm creation.  

I believe that the experience of this summer will be very important to my post-Clark work, both in the 

skillsets I now know, and the kind of projects I pursue. 

I would encourage students who are very serious about technical GIS to consider being in touch 

with Calthorpe, although they do not have a regular internship program.  My caveat would be that 

unless the student feels like they can step right into enterprise-level Python coding, they might feel out 

of their depth in the Analytics office.  For the self-selecting student however, there is a tremendous 

amount to learn and do if you can define your own course and demonstrate your value to the 

organization. 
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Conclusion 

 

My internship significantly changed my trajectory in the field of Geographic Information science.  

I went into the summer believing that the urban planning aspect of the work would be of primary 

interest, but discovered that I was wholly engaged by the technical GIS and data science aspects.  I am 

now aggressively pursuing a career in spatial method and algorithm creation, data science, and aspects 

of machine learning – all technical skillsets that I advanced dramatically through my internship. 

Calthorpe Analytics was a wonderful environment in which to spend a summer in California.  The 

workplace culture of bike rides and foosball games kept the overall intensity of the constant drive to 

perform and innovate in check, making for easy in-office relationships, and healthy, happy employees. 
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Figures 

Figure 1: New network connectivity for greenfield development: 
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Appendix:  

Code Examples: 

Example 1: 

 

from sqlalchemy import create_engine 

import pandas as pd 
import numpy as np 

import geopandas as gpd 

import shapely as shp 
 

import matplotlib.pyplot as plt 
 

engine = create_engine('postgresql:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx') 

con = engine.connect() 
 

pd.set_option('display.float_format', lambda x: '%.2f' % x) 
 

pSql_city = ''' 

    SELECT 
        parcel as parcelno, 

        currentland as land_val, 

        currentimpr as imp_val, 
        currenttotal as sum_val 

    FROM 
   public.taxparcels 

''' 
 

pSql_count = ''' 

    SELECT 

        parcelno, 
        sum_landvalue as land_val, 

        sum_improvementvalue as imp_val, 

        (sum_landvalue + sum_improvementvalue) as sum_val 
    FROM 
   public.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

''' 
 

pSql_parcels = ''' 
    SELECT 

        wkb_geometry, 

        geography_id, 
        parcelno, 
         

        pop, 

        emp, 

        du_detsf_sl, 
        du_detsf_ll, 

        du_attsf, 

        du_mf, 
         

        bldg_sqft_detsf_sl, 

        bldg_sqft_detsf_ll, 
        bldg_sqft_attsf,         

        bldg_sqft_mf, 
         

        (bldg_sqft_detsf_sl + 

        bldg_sqft_detsf_ll + 
        bldg_sqft_attsf +         

        bldg_sqft_mf + 

        bldg_sqft_retail_services + 
        bldg_sqft_restaurant + 

        bldg_sqft_accommodation + 

        bldg_sqft_arts_entertainment + 
        bldg_sqft_other_services + 

        bldg_sqft_office_services + 
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        bldg_sqft_public_admin + 

        bldg_sqft_education + 
        bldg_sqft_medical_services + 

        bldg_sqft_transport_warehousing + 

        bldg_sqft_wholesale) as total_sqft 
    FROM 
   base_load.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

''' 
 

pSql_ldc = ''' 
    SELECT 

        a.land_development_category, 

        a.gid, 
        b.geography_id 

         

    FROM 

        base_load.xxxxxxxxxxxxxxxxxxxxxxxxxxxx a, 

        public.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx b 
 

    WHERE  

        st_intersects(b.wkb_geometry,a.wkb_geometry) AND 
        st_within(st_pointonsurface(b.wkb_geometry),a.wkb_geometry)           

''' 
 

pSql_type = ''' 

    SELECT 
        gid, 

        geog_key 

    FROM 
   urbanfootprint_reference_datasets.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

''' 
 

# ### data 

city_df = pd.read_sql_query(pSql_city, engine) 
county_df = pd.read_sql_query(pSql_count, engine) 

ldc_df = pd.read_sql_query(pSql_ldc, engine) 

type_df = pd.read_sql_query(pSql_type, engine) 

parcels_df = pd.read_sql_query(pSql_parcels, engine) 
 

# ### append and clean 

values_df = city_df.append(county_df) 

dup_series = values_df.duplicated(subset=['parcelno']) 
 

dups = [] 

for line in dup_series.iteritems(): 
    if line[1]: 

        dups.append(line[0]) 
 

parcels_all = values_df.drop_duplicates(subset=['parcelno']) 
 

 

# ### merge 

parcels_df = parcels_df.merge(parcels_all, how='left', on='parcelno') 
ldc_df = ldc_df.merge(type_df, how='left', on='gid') 

df = parcels_df.merge(ldc_df, how='left', on='geography_id') 
 

 

# ### calculations 
condition = ( (base_canvas['base_pop'] + base_canvas['base_emp']) / base_canvas['base_acres_gross'] <= 2) & \ 

                 (base_canvas['intersection_density_sqmi_focal'] < 25) 
 

 base_canvas.loc[condition,'base_land_development_category'] = 'rural' 
 

 

# In[23]: 
sum_type=['land', 'imp', 'sum'] 

du_type =['detsf_sl', 'detsf_ll', 'attsf', 'mf']  
 

 

# ##### norm by parcel area in sqft 



  Data and Geometry; Model Building at Calthorpe Analytics 

19 
 

for t in sum_type: 

    df['norm_'+t+'_val'] = df[t+'_val'] / df['total_sqft'] 
 

 

# ##### total residential sqft and du 

df['res_sqft_tot'] = df['bldg_sqft_detsf_sl'] + df['bldg_sqft_detsf_ll'] + df['bldg_sqft_attsf'] + df['bldg_sqft_mf'] 

df['du_tot'] = df['du_detsf_sl'] + df['du_detsf_ll'] + df['du_attsf'] + df['du_mf'] 
 

# ##### percent residential by total building sqft in parcel 

df['percent_res'] = df['res_sqft_tot'] / df['total_sqft'] 
 

# ##### value / du 
agg_list = ['geog_key', 'land_development_category', 'du_detsf_sl', 'du_detsf_ll', 'du_attsf', 'du_mf'] 

#agg_dict = {'du_detsf_sl':np.sum, 'du_detsf_ll':np.sum, 'du_attsf':np.sum, 'du_mf':np.sum} 

for t in sum_type: 
    for d in du_type:  

        df['val_perUnit_du_'+d+'_'+t] = np.where(df['du_'+d] > 0, df[t+'_val'] / df['du_'+d], 0) 

        agg_list.append('val_perUnit_du_'+d+'_'+t) 
        #agg_dict['val_perUnit_du_'+d+'_'+t] = np.sum 
 

df_sums = df[agg_list].groupby(['geog_key','land_development_category']).sum() 
 

df_out = pd.DataFrame() 
for t in sum_type: 

    for d in du_type: 

        df_out['ave_perUnit_du_'+d+'_'+t] = df_sums['val_perUnit_du_'+d+'_'+t] / df_sums['du_'+d] 
 

df_out.to_csv('C:/Users/sam/Desktop/AveValueDU.csv') 
 

 

# ### out to sql 
 

df.to_sql('parcel_land_val', engine, schema='base_load', if_exists='replace') 
 

con.execute('ALTER TABLE base_load.parcel_land_val alter column wkb_geometry set data type geometry') 
 

 

 

Example 2: 

 

from sqlalchemy import create_engine 

import pandas as pd 
import numpy as np 

import pandana as pdna 

import geopandas as gpd 
import shapely as shp 

from pandana.loaders import osm 

from scipy.spatial import Voronoi 
 

engine = create_engine('postgresql://xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx') 
con = engine.connect() 
 

config_dict = dict( 
    data_table='uf_loadedxxxxxxxxxxxxxxxx', 

    data_schema='base_load', 

    data_geom_col='wkb_geometry', 
    data_index_col='gid', 

    prop_table='proportion_table', 

    vor_table='voronoi_temp', 
    base_schema='base_load', 

    net_name='C:/Users/sam/Desktop/xxxxxxxxxxxxxxxxxxxxxxxxxx', 
    bbox=(xxxxxxxxxx, yyyyyyyyyyyyy, xxxxxxxxxx, yyyyyyyyy), #tuple (y-min, x-min, y-max, x-max) in srid 4326 WGS 84  

    agg_vars = ['acres_parcel_res','acres_parcel_emp','acres_parcel_mixed_use','du','pop','emp','emp_ret'] 

) 
 

class vor_data_assign(object):   

    ## creates nodes from predefined network saved in HDF5 format (net_name = path to file) 
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    def __init__(self, settings): 

        self.s = settings 
         

        net_data = pd.HDFStore(self.s['net_name']) 

        self.nodes = net_data.nodes 
     

        # Formats dict input 
        var_list = [] 

        temp = self.s['data_index_col']+', ' 

        for string in self.s['agg_vars']: 
            if string == 'pop': 

                temp += 'pop as pop1, ' 

                var_list.append('pop1') 

            else: 
                temp += string+', ' 

                var_list.append(string) 
 

        self.s['data_string'] = temp[:-2] 
        self.var_list = var_list 
     

    def create_new_osm_network(self): 
        self.network = osm.network_from_bbox(self.s['bbox'][0], self.s['bbox'][1],self.s['bbox'][2], self.s['bbox'][3]) 

        self.network.save_hdf5(self.s['net_name']) 
         

    ## creates network 

    def create_network(self, out=False): 
        print 'Building network...' 

        self.network = pdna.Network.from_hdf5(self.s['net_name']) 

        print 'Done' 
     

    ## creates voronoi table 

    def vor_from_nodes(self): 
         

        print 'Creating Voronoi Table...' 
        point_array = self.nodes.values 

        vor = Voronoi(point_array) 
         

        # creates shapely polygons from valid voronoi regions (polygons) 

        region_poly = [] 

        for region in vor.regions: 
            if len(region)>2 and -1 not in region: 

                poly = [] 

                for point in region: 
                    poly.append(vor.vertices[point]) 

                region_poly.append(shp.geometry.Polygon(poly)) 
         

        #create geopanda and shapely polygon for geoprocessing (within) 

        region_gdf = gpd.GeoDataFrame(geometry=region_poly) 
        bbox_clip = shp.geometry.Polygon([[self.s['bbox'][1],self.s['bbox'][0]], 

                                          [self.s['bbox'][3],self.s['bbox'][0]], 

                                          [self.s['bbox'][3],self.s['bbox'][2]], 
                                          [self.s['bbox'][1],self.s['bbox'][2]]]) 
                                            

        region_gdf = region_gdf[region_gdf.within(bbox_clip)] 
         

        # df of wkb geoetry of regions 
        region_df = pd.DataFrame(map(lambda x: shp.wkb.dumps(x).encode('hex'), region_gdf.geometry), columns=['geometry']) 
         

        # writes voronoi polygons to Postgres, alters table for geometry, index, removes invalid polygons 
        region_df.to_sql(self.s['vor_table'], engine, schema=self.s['schema'], if_exists='replace') 
         

        con.execute('ALTER TABLE {base_schema}.{vor_table} ALTER COLUMN geometry SET DATA TYPE geometry'.format(**self.s)) 

        con.execute('CREATE index ON {base_schema}.{vor_table} USING gist(geometry)'.format(**self.s)) 

        con.execute('DELETE FROM {base_schema}.{vor_table} WHERE NOT st_isvalid(geometry)'.format(**self.s)) 
         

        del region_poly, region_gdf, region_df 

        print 'Done' 
     

    ## Creates proportion table - long run time (8+ hours) 
    def proportion_table(self): 
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        psql_prop = ''' 
            CREATE TABLE {base_schema}.{prop_table} 

            AS SELECT 

            a.{data_index_col} as block_id, 
            st_area(st_transform(a.{data_geom_col}, 4326)) as block_area, 

            b.index as poly_id, 
            st_setsrid(b.geometry,4326) as geom, 

            st_centroid(st_setsrid(b.geometry,4326)) as centroid, 

            st_area(st_setsrid(b.geometry,4326)) as poly_area, 
            st_area(st_intersection(st_makevalid(st_transform(a.{data_geom_col}, 4326)),     st_setsrid(b.geometry,4326))) as sub_area, 

            st_area(st_intersection(st_makevalid(st_transform(a.{data_geom_col}, 4326)), st_setsrid(b.geometry,4326))) / 

st_area(st_transform(a.{data_geom_col}, 4326)) as percent_of_block,  
            st_area(st_intersection(st_makevalid(st_transform(a.{data_geom_col}, 4326)), st_setsrid(b.geometry,4326))) / 

st_area(st_setsrid(b.geometry,4326)) as percent_of_poly  
 

            FROM 

            {data_schema}.{data_table} a, 

            {base_schema}.{vor_table} b 
 

            WHERE 
            st_intersects(st_transform(a.wkb_{data_geom_col}, 4326), st_setsrid(b.geometry,4326)) 

            '''.format(**self.s) 
         

        print 'Creating Proportion Table...' 

        con.execute(psql_prop,engine) 

        print 'Done' 
         

    #computes the aggregation of the specified vars proportionally to their avaibility in the voronoi polygons  
    def compute_network(self, net=''): 
         

        #data 
        pSql_data=''' 

            SELECT 

            {data_string} 
            FROM 

            {data_schema}.{data_table} 

            '''.format(**self.s) 
         

        pSql_prop=''' 
            SELECT 

            block_id, 

            poly_id, 
            st_x(centroid) as x, 

            st_y(centroid) as y, 

            percent_of_block, 
            percent_of_poly 

            FROM 

            {base_schema}.{prop_table} 
            '''.format(**self.s) 
         

        try: 
            df_prop = pd.read_sql_query(pSql_prop, engine) 

        except: 
            user_imp = raw_input('Proportion Table Not Found: Create Now (8+ hours run) y/n : ') 
             

            if user_imp in ('y', 'Y'): 
                self.vor_from_nodes() 

                self.proportion_table() 

                df_prop = pd.read_sql_query(pSql_prop, engine) 

            else: 

                return 
         

        print 'Computing Network Aggregation...' 
         

        df_data = pd.read_sql_query(pSql_data, engine, index_col=self.s['data_index_col']) 
         

        #creates master df 
        df = df_prop.merge(df_data, how='left', left_on='block_id', right_index=True).astype(object) 
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## Aggregate data on Voronoi Polygon 

        sum_df = pd.DataFrame() 
        sum_df['poly_id'] = df.poly_id 
         

        # create block-proportial sums  
        for var in self.var_list: 

            sum_df[var+'_poly'] = df[var] * df.percent_of_block 
         

         

        #group by polygon id     
        group = sum_df.groupby('poly_id') 
         

        #apply np.sum to all block-proportional data columns 

        var_dict = {} 

        for var in self.var_list: 
            var_dict[var+'_poly'] = np.sum 
             

        agg_df = group.agg(var_dict) 
            

        # Data reassigned spatial context 
        df_coords = df[['poly_id', 'x','y']].drop_duplicates('poly_id') 

        df_poly_sum = agg_df.merge(df_coords, how="left", left_index=True, right_on='poly_id') 
                 

        del df_coords 
         

## Network set 

        x, y = df_poly_sum.x, df_poly_sum.y 
         

        #look for preexisting network (avoids multiple graph memory issue in pandana) 

        if net=='': 

            try: 
                df_poly_sum['node_ids'] = self.network.get_node_ids(x,y) 

            except: 
                self.create_network() 
                df_poly_sum['node_ids'] = self.network.get_node_ids(x,y) 

                print 'Continuing Network Aggregation...' 

        else: 
            self.network = net 

            df_poly_sum['node_ids'] = self.network.get_node_ids(x,y) 
         

         

        self.network.precompute(401) 
         

        # create dataframe, assign data to the network by node, and populate with network aggregation     
        df_net_results = pd.DataFrame()     

        for var in self.var_list: 

            self.network.set(df_poly_sum.node_ids, variable=df_poly_sum[var+'_poly'], name=var) 
            df_net_results[var+'_net_sum'] = self.network.aggregate(401,type="sum", decay="flat", name=var) 
         

        df_poly_sum = df_poly_sum.merge(df_net_results, how='left', left_on='node_ids', right_index=True)    
         

        df = df.merge(df_poly_sum, how='left', on='poly_id') 
         

        del df_poly_sum, df_net_results  
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Example 3: 

 

##############################################################################################     

# 
#     attributes: 

# 

#     bbox - bounding box (xmin, ymin, xmax, ymax) in 4326 for osm network ingest 
#     net_name - location of HDF5 network store 

#     pSql - sql string for data  

#     crs_data - epsg code for projected data 
#     engine - connection engine 

#     con - engine.connect object 

#     net_data - HDF5 data store object 
#     nodes - master list of nodes 

#     m_nodes_gdf - master gdf of nodes 

#     edges - master list of edges 

#     edges_raw - copy of store 'edges' 

#     data_gdf - gdf of data_gdf 

#     m_edges_gdf - master gdf of edges 
#     nodes_gdf - gdf of new nodes 

#     poly - shapely polygon of geometry 

#     basic_poly - shapely polgon of nodes exterior ring 
#     edges_gdf - gdf of new edges 

#     prox_table - df of closest network edges to nodes of new subnet (ordered)  

#     connect_id - index value of node inserted into existing network 
# 

#     methods: 

# 
#     refresh_network() - re-ingests a network from osm (by bbox), writes to HDF5 store 

#     data_in() - creates core df and gdf tables 

#     find_new_nodes(geography_id, # of intersections(n)) - finds set of n new nodes within geometry 
#     edge_poly() - creates simple edge set from exterior ring of new nodes 

#     edge_delaunay() - creates complex edge set based on delaunay triangulation 

#     trim_net() - removes edges from set where the edge intersects the underlying geometry,  

#                  does not allow for orphaned nodes 

#     find_closest_point() - creates an ordered table of information on the closest edges from the new nodes 
#     add_connect_edge(series from above table) - addes an edge from point to closest edge 

#     replace_intersect_edge(series from above table) - replaces closest edge with two edges linking to network 

#     add_nodes_HDF5() - adds new nodes to HDF5 store 
#     add_edges_HDF5() - adds new edges to HDF5 store 

#  

###################################################################################################  
 

 

    def __init__(self, user_dict): 
         

        self.bbox = user_dict['bbox'] 
        self.net_name= user_dict['net_name'] 

        self.pSql = user_dict['psql'].format(schema=user_dict['schema'], data_table=user_dict['data_table']) 

        self.crs_data = user_dict['crs_data'] 
         

        self.engine = create_engine(user_dict['connect_string']) 

        self.con = self.engine.connect() 
         

    def refresh_network(self, num=2): 
         

        try: 
            pdna.network.reserve_num_graphs(num) 

        except: 

            pass 
         

        self.network = osm.network_from_bbox(self.bbox[0],self.bbox[1],self.bbox[2],self.bbox[3]) 

        self.network.save_hdf5(self.net_name) 
         

    def data_in(self): 
         

        self.net_data = pd.HDFStore(self.net_name) 
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        nodes, edges = self.net_data.nodes, pd.DataFrame(self.net_data.edges.values, columns=['from', 'to', 'imp']) 

        edges_raw = self.net_data.edges 
         

        gdf = gpd.read_postgis(self.pSql, self.engine, geom_col='geometry') 

        gdf.crs = {'init' : self.crs_data} #sets crs to match values 
         

        nodes_gdf = gpd.GeoDataFrame(geometry=map(lambda x, y: shp.geometry.Point(x, y), nodes['x'], nodes['y'])) 
        nodes_gdf.index = nodes.index 

        nodes_gdf.crs = {'init' :'epsg:4326'} # sets crs to match osm standard 

        nodes_gdf.to_crs({'init' : self.crs_data}, inplace=True) # reprojected to match data 
         

        edges = edges.merge(nodes, how='left', left_on='from', right_index=True) 

        edges = edges.merge(nodes, how='left', left_on='to', right_index=True, suffixes=['_from', '_to']) 
        edge_array = edges[['x_from', 'y_from', 'x_to', 'y_to']].as_matrix() 

        edge_list = [] 
        for edge in edge_array: 

            edge_list.append(shp.geometry.LineString([(edge[0], edge[1]), (edge[2], edge[3])])) 
             

        edges_gdf = gpd.GeoDataFrame(geometry=edge_list) 

        edges_gdf = edges_gdf.merge(edges[['from','to','imp']], how='left', left_index=True, right_index=True) 

        edges_gdf.crs = {'init' :'epsg:4326'} 
        edges_gdf.to_crs({'init' : self.crs_data}, inplace=True) 
         

        self.nodes, self.m_nodes_gdf, self.edges, self.edges_raw = nodes, nodes_gdf, edges, edges_raw 

        self.data_gdf, self.m_edges_gdf = gdf, edges_gdf 
         

    def find_new_nodes(self, id_num, intersections): #data gdf, id, number of intersections to create 
 

        geo_poly = self.data_gdf[self.data_gdf.geography_id == id_num].geometry.values[0] 
        poly = self.data_gdf[self.data_gdf.geography_id == id_num].geometry.bounds.values 
 

        minx, miny, maxx, maxy = poly[0][0], poly[0][1], poly[0][2], poly[0][3] 

        rand_points_list = [] 
 

        #random points 

        for n in range(0,10000): 

            x_rand, y_rand = np.random.randint(minx, maxx), np.random.randint(miny, maxy)  

            rand_points_list.append(shp.geometry.Point(float(x_rand), float(y_rand))) 
 

        rand_points_gdf = gpd.GeoDataFrame(geometry=rand_points_list) 

        rand_points_gdf.crs = {'init' :'epsg:32154'} 
 

        #points within geometry 

        point_obj = shp.ops.cascaded_union(rand_points_gdf.geometry) 

        points = point_obj.intersection(geo_poly) 
 

        #Kmeans clusters 
        est_mini = MiniBatchKMeans(init='random', n_clusters=intersections, n_init=10) 

        fit = est_mini.fit(points) 
 

        #nodes from cluster centers 

        nodes_list = [] 

        for point in fit.cluster_centers_: 
            nodes_list.append((point[0], point[1])) 
 

        #arranges points counter clock-wise 

        mean_x = np.sum(x[0] for x in nodes_list) / len(nodes_list)  

        mean_y = np.sum(x[1] for x in nodes_list) / len(nodes_list)  
 

        def arctan(x): 

            return(math.atan2(x[0] - mean_x, x[1] - mean_y) + 2 * math.pi) % (2 * math.pi) 
 

        l = sorted(nodes_list, key=arctan) 
        out_poly = shp.geometry.Polygon(l) 
 

        #geometry from reordered points 
        geom_list =[] 

        for point in l: 

            geom_list.append(shp.geometry.Point(point[0], point[1])) 
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        new_nodes_gdf = gpd.GeoDataFrame(geometry=geom_list) 

        new_nodes_gdf['coords'] = l 
 

        #assigns ids from master node gdf 

        new_ids = [] 
        ids = self.nodes.index.max() + 1 

        for n in range(len(new_nodes_gdf.geometry)): 
            new_ids.append(ids + n) 
 

        new_nodes_gdf['index_']=new_ids 
        #new_nodes_gdf.set_index('index', inplace=True) 
 

        self.nodes_gdf, self.poly, self.basic_poly = new_nodes_gdf, geo_poly[0], out_poly 
         

    def edge_poly(self):  #creates to/from indexed edges from exterior edges of polygon 
     

        coords = self.basic_poly.exterior.coords 
 

        line_list = [] 

        id_list = [] 
        length_list = [] 
 

        for i in range(len(coords) -1): 
            line = shp.geometry.LineString((coords[i], coords[i+1])) 

            line_list.append(line) 

            length_list.append(line.length) 
            if self.nodes_gdf.index[i] == self.nodes_gdf.index[-1]: 

                id_list.append((self.nodes_gdf.index_[i], self.nodes_gdf.index_[0])) 

            else: 
                id_list.append((self.nodes_gdf.index_[i], self.nodes_gdf.index_[i+1])) 
 

        edges_gdf = gpd.GeoDataFrame(geometry=line_list) 

        edges_gdf['edge_id'] = id_list 

        edges_gdf['distance'] = length_list 
 

        self.edges_gdf = edges_gdf 
         

    def edge_delaunay(self):  #creates to/from indexed edges of all unique edges created by DeLaunay triangulation of new nodes 
 

        array = [] 

        for i in range(len(self.nodes_gdf.coords)): 

            array.append(self.nodes_gdf.coords.values[i]) 
 

        np.asarray(array) 
 

        mesh = Delaunay(array) 
 

        id_list = [] 

        line_list = [] 
        length_list = [] 
 

        for simp in mesh.simplices: 
            for i in range(0,3): 

                if i == 2: 

                    line = shp.geometry.LineString([self.nodes_gdf.coords[simp[i]],self.nodes_gdf.coords[simp[0]]]) 

                    id_list.append((self.nodes_gdf.index_[simp[i]],self.nodes_gdf.index_[simp[0]])) 

                    line_list.append(line) 

                    length_list.append(line.length) 

                else:     
                    line = shp.geometry.LineString([self.nodes_gdf.coords[simp[i]],self.nodes_gdf.coords[simp[i+1]]]) 

                    id_list.append((self.nodes_gdf.index_[simp[i]],self.nodes_gdf.index_[simp[i+1]])) 
                    line_list.append(line) 

                    length_list.append(line.length) 
 

        edges_gdf = gpd.GeoDataFrame(geometry=line_list) 

        edges_gdf['edge_id'] = id_list 
        edges_gdf['distance'] = length_list 
 

        edge_copy = edges_gdf.copy() 
        for i in edge_copy.index: 
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            for j in edges_gdf.index: 

                if i != j: 
                    if edge_copy.geometry[i].equals(edge_copy.geometry[j]): 

                        edges_gdf.drop(i, inplace=True)             
 

        self.edges_gdf = edges_gdf 
         

    def trim_net(self): # removes edges that intersect the boundary of the root geography 
 

        outline = shp.ops.cascaded_union(self.poly.exterior) 
 

        nodes = [] 
        drop_list = [] 

        for line in self.edges_gdf.iterrows(): 

            if line[1][0].intersects(outline): 
                drop_list.append(line[0]) 

            else: 
                nodes.append(line[1][1][0]) 
                nodes.append(line[1][1][1]) 
 

        lost_nodes = [] 
        for row in self.nodes_gdf.iterrows(): 

            if row[1]['index_'] not in nodes: 
                lost_nodes.append(row[1]['index_']) 
 

        keep_line = '' 
        keep_length = 10000 

        for line in drop_list: 

            if self.edges_gdf.loc[line][1][0] in lost_nodes or self.edges_gdf.loc[line][1][1] in lost_nodes: 
                if self.edges_gdf.loc[line][0].length < keep_length: 

                    keep_length = self.edges_gdf.loc[line][0].length 

                    keep_line = line 
 

        if keep_line in drop_list: 
            drop_list.remove(keep_line) 
 

        for line in drop_list: 

            self.edges_gdf.drop(line, inplace=True) 
 

        self.edges_gdf.reset_index(drop=True, inplace=True) 
         

    def find_closest_point(self):  
 

        close_dict = {} 

        index = 0 
        centers = self.nodes_gdf.coords 

        for center in centers: 
 

            #defines line of length 1000 'north' of point 

            x, c_y, e_y = center[0], center[1], center[1] + 1000 
            line = shp.geometry.LineString([(x, c_y), (x, e_y)]) 
 

            #creates radial 'star' of lines 
            center_point = shp.geometry.Point(x, c_y) 

            radii= [shp.affinity.rotate(line, i, (x,c_y)) for i in range(0,360,10)] 

            mergedradii = shp.ops.cascaded_union(radii) 
 

            #set of all network edges that intersect with 'star' object 
            edge_set = self.m_edges_gdf[self.m_edges_gdf.geometry.intersects(mergedradii)] 
 

            #finds closest edge 
            min_dist = '' 

            line_num = '' 

            for line in edge_set.iterrows(): 
                d = center_point.distance(line[1].geometry) 

                if min_dist == '': 
                    min_dist = d 

                    line_num = (line[1].name) 

                elif d < min_dist: 
                    min_dist = d 
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                    line_num = (line[1].name) 
             

            #set of intersection points on closest network edge 

            union_obj = mergedradii.intersection(edge_set.ix[line_num, 'geometry']) 

            try: 
                intersection_points = list(union_obj.geoms) 
 

                #finds closest point within set of points 

                min_dist = '' 

                point_num = '' 
                i = 0 

                for point in intersection_points: 

                    d = center_point.distance(point) 
                    if min_dist == '': 

                        min_dist = d 

                        point_num = i 
                    elif d < min_dist: 

                        min_dist = d 

                        point_num = i 

                    i+=1 

                out_xy = intersection_points[point_num].coords 

            except: 
                min_dist = center_point.distance(union_obj) 

                out_xy = union_obj.coords 
 

            #adds index:tuple of results for each point  

            close_dict[index] = (line_num, min_dist, out_xy) 
            index += 1 
 

        out = pd.DataFrame.from_dict(close_dict, orient='index') 
        out.columns = ['line_number', 'length', 'coords'] 

        out['to'] = self.m_edges_gdf.loc[out.line_number.tolist()]['to'].values 

        out['from'] = self.m_edges_gdf.loc[out.line_number.tolist()]['from'].values 
#         out['to_coords'] = self.m_edges_gdf.loc[out.line_number.tolist()]['to'].values 

        out.index.names = ['node'] 

        out.sort_values('length', inplace=True) 
        out.drop_duplicates('line_number', inplace=True) 

        out.reset_index(inplace=True) 
 

        self.prox_table = out 
         

    def add_connect_edge(self, line): #line - series from self.prox_table 
 

        #adds the node that is the intercept point handed from the find_closest_point() output tuple 

        self.nodes_gdf = self.nodes_gdf.append({'geometry':shp.geometry.Point(line['coords'][0]),                                      'coords':line['coords'][0], 

'index_':self.nodes_gdf.index_.max() + 1}, ignore_index=True) 
 

        #creates a line from the intercept point to the closest node, calculates distance 

        line_out = shp.geometry.LineString([line['coords'][0],self.nodes_gdf.loc[line['node']].geometry.coords[0]]) 
        length = line_out.length 
 

        #appends the line to line_gdf 

        self.edges_gdf = self.edges_gdf.append({'geometry':line_out, 'edge_id':(self.nodes_gdf.index_.max(),                                                

self.nodes_gdf.loc[line['node']].index_), 'distance':length}, ignore_index=True) 
         

    def replace_intersect_edge(self, line): #line - series from self.prox_table 

        #drop existing edge  
        self.edges_raw.drop((line['to'], line['from']), inplace=True) 
         

        #gets index of connection node 

        self.connect_id = self.nodes_gdf.loc[line.node]['index_'] 
         

        #create new connection edges (to) 

        to_line = shp.geometry.LineString([line['coords'][0], self.m_nodes_gdf.loc[line['to']].geometry.coords[0]]) 

        self.edges_gdf = self.edges_gdf.append({'geometry':to_line, 'edge_id':(line['to'],                                                
self.nodes_gdf.loc[line['node']].index_),                                                'distance':to_line.length}, ignore_index=True) 

        #create new connection edges (from) 

        from_line = shp.geometry.LineString([line['coords'][0], self.m_nodes_gdf.loc[line['from']].geometry.coords[0]]) 
        self.edges_gdf = self.edges_gdf.append({'geometry':from_line, 'edge_id':(line['from'],                                                

self.nodes_gdf.loc[line['node']].index_),                                                'distance':from_line.length}, ignore_index=True) 
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    def add_nodes_HDF5(self): #new node gdf, existing nodes, HDF5 store obj 
     

        #converts calculated index into gdf index obj 
        self.nodes_gdf.set_index('index_', inplace=True) 
 

        #reverts projection to geographic 
        self.nodes_gdf.crs = {'init' :'epsg:32154'} 

        self.nodes_gdf.to_crs({'init' :'epsg:4326'}, inplace=True) 
 

        #converts points to coordinates for network HDF5 

        xlist, ylist = [], [] 
        for tup in self.nodes_gdf.geometry.values: 

            xlist.append(tup.x) 

            ylist.append(tup.y) 
 

        self.nodes_gdf['x'], self.nodes_gdf['y'] = xlist, ylist 
         

        #writes nodes to HDF5 

        self.nodes = self.nodes.append(self.nodes_gdf[['x','y']]) 
        self.net_data['nodes']=self.nodes 
         

    def add_edges_HDF5(self): #new edges, raw edge df from store, HDF5 store obj 
 

        #create multiIndex obj 
        tuples = list(self.edges_gdf.edge_id) 

        index = pd.MultiIndex.from_tuples(tuples) 
 

        #creates a formated output df 

        out = pd.DataFrame(columns=['from','to','distance'], index=index) 

        for line in self.edges_gdf.iterrows(): 
            out.loc[line[1][1]] = [line[1][1][0],line[1][1][1],line[1][2]] 
         

        out[['from', 'to']] =  out[['from', 'to']].astype(np.int64) 

        out['distance'] =  out['distance'].astype(np.float64) 
         

        #writes edges to HDF5     

        self.edges_raw = self.edges_raw.append(out) 

        self.net_data['edges']=self.edges_raw 
         

 

 


	Clark University
	Clark Digital Commons
	5-2017

	Data and Geometry; Model Building at Calthorpe Analytics
	Samuel M. Upton
	Recommended Citation


	Data and Geometry; Model Building at Calthorpe Analytics

